Equivalence of Definitions of Matroid/Definition 1 implies Definition 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $M = \struct {S, \mathscr I}$ be an independence system.

Let $M$ also satisfy:

\((\text I 3)\)   $:$     \(\ds \forall U, V \in \mathscr I:\) \(\ds \size V < \size U \implies \exists x \in U \setminus V : V \cup \set x \in \mathscr I \)      


Then $M$ satisfies:

\((\text I 3')\)   $:$     \(\ds \forall U, V \in \mathscr I:\) \(\ds \size U = \size V + 1 \implies \exists x \in U \setminus V : V \cup \set x \in \mathscr I \)      


Proof

Since:

$\forall U, V \in \mathscr I : \size U = \size V + 1 \implies \size V < \size U$


If follows that if $M$ satisfies condition $(\text I 3)$ then $M$ satisfies condition $(\text I 3')$.

$\blacksquare$