Equivalence of Definitions of Matroid/Definition 2 implies Definition 3

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $M = \struct {S, \mathscr I}$ be an independence system.

Let $M$ also satisfy:

\((\text I 3')\)   $:$     \(\ds \forall U, V \in \mathscr I:\) \(\ds \size U = \size V + 1 \implies \exists x \in U \setminus V : V \cup \set x \in \mathscr I \)      


Then $M$ satisfies:

\((\text I 3)\)   $:$     \(\ds \forall U, V \in \mathscr I:\) \(\ds \size V < \size U \implies \exists Z \subseteq U \setminus V : \paren{V \cup Z \in \mathscr I} \land \paren{ \size {V \cup Z} = \size U} \)      


Proof

From Independent Set can be Augmented by Larger Independent Set it follows that if $M$ satisfies condition $(\text I 3')$ then $M$ satisfies condition $(\text I 3)$.

$\blacksquare$