Equivalence of Definitions of Matroid/Definition 4 implies Definition 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $M = \struct {S, \mathscr I}$ be an independence system.

Let $M$ also satisfy:

\((\text I 3)\)   $:$     \(\ds \forall A \subseteq S:\) \(\ds \text{ all maximal subsets } Y \subseteq A \text{ with } Y \in \mathscr I \text{ have the same cardinality} \)      


Then $M$ satisfies:

\((\text I 3)\)   $:$     \(\ds \forall U, V \in \mathscr I:\) \(\ds \size V < \size U \implies \exists x \in U \setminus V : V \cup \set x \in \mathscr I \)      


Proof

Let $M$ satisfy condition $(\text I 3)$.

Let $U, V \in \mathscr I$ such that $\size V < \size U$.

Let $W$ be a maximal independent subset of $U \cup V$ containing $U$.

Then:

$\size U \le \size W$

By condition $(\text I 3)$:

$V$ is not a maximal independent subset of $U \cup V$

Then:

$\exists x \in \paren {U \cup V} \setminus V$ such that $V \cup \set x \in \mathscr I$

From Set Difference with Union is Set Difference:

$\exists x \in U \setminus V$ such that $V \cup \set x \in \mathscr I$

It follows that $M$ satisifies $(\text I 3)$

$\blacksquare$