Equivalence of Definitions of Matroid Circuit Axioms
![]() | This article needs proofreading. Please check it for mathematical errors. If you believe there are none, please remove {{Proofread}} from the code.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Proofread}} from the code. |
![]() | This article, or a section of it, needs explaining. In particular: Any reason for calling the formulations "conditions"? IMO the former word is better, because "condition" does not really fit. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by explaining it. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Explain}} from the code. |
Theorem
Let $S$ be a finite set.
Let $\mathscr C$ be a non-empty set of subsets of $S$.
The following statements are equivalent:
Condition 1
$\mathscr C$ satisfies the circuit axioms:
\((\text C 1)\) | $:$ | \(\ds \O \notin \mathscr C \) | |||||||
\((\text C 2)\) | $:$ | \(\ds \forall C_1, C_2 \in \mathscr C:\) | \(\ds C_1 \ne C_2 \implies C_1 \nsubseteq C_2 \) | ||||||
\((\text C 3)\) | $:$ | \(\ds \forall C_1, C_2 \in \mathscr C:\) | \(\ds C_1 \ne C_2 \land z \in C_1 \cap C_2 \implies \exists C_3 \in \mathscr C : C_3 \subseteq \paren {C_1 \cup C_2} \setminus \set z \) |
Condition 2
$\mathscr C$ satisfies the circuit axioms:
\((\text C 1)\) | $:$ | \(\ds \O \notin \mathscr C \) | |||||||
\((\text C 2)\) | $:$ | \(\ds \forall C_1, C_2 \in \mathscr C:\) | \(\ds C_1 \ne C_2 \implies C_1 \nsubseteq C_2 \) | ||||||
\((\text C 3')\) | $:$ | \(\ds \forall C_1, C_2 \in \mathscr C:\) | \(\ds C_1 \ne C_2 \land z \in C_1 \cap C_2 \land w \in C_1 \setminus C_2 \implies \exists C_3 \in \mathscr C : w \in C_3 \subseteq \paren {C_1 \cup C_2} \setminus \set z \) |
Condition 3
$\mathscr C$ satisfies the circuit axioms:
\((\text C 1)\) | $:$ | \(\ds \O \notin \mathscr C \) | |||||||
\((\text C 2)\) | $:$ | \(\ds \forall C_1, C_2 \in \mathscr C:\) | \(\ds C_1 \ne C_2 \implies C_1 \nsubseteq C_2 \) | ||||||
\((\text C 3'')\) | $:$ | \(\ds \forall X \subseteq S \land \forall x \in S:\) | \(\ds \paren {\forall C \in \mathscr C : C \nsubseteq X} \implies \paren {\exists \text{ at most one } C \in \mathscr C : C \subseteq X \cup \set x} \) |
Condition 4
$\mathscr C$ is the set of circuits of a matroid on $S$
Proof
Condition 1 implies Condition 2
Let $\mathscr C$ satisfy the circuit axioms $(\text C 1)$, $(\text C 2)$ and $(\text C 3)$.
It has only to be shown that circuit axiom $(\text C 3')$ is satisfied by $\mathscr C$.
Let:
\(\ds F = \leftset{\tuple{C, D, x, y} }\) | \(:\) | \(\ds C, D \in \mathscr C \land C \neq D\) | ||||||||||||
\(\ds \) | \(\land\) | \(\ds x \in C \cap D \land y \in C \setminus D\) | ||||||||||||
\(\ds \) | \(\land\) | \(\ds \nexists C' \in \mathscr C : y \in C' \subseteq \paren{C \cup D} \setminus \set x \mathop {\rightset {} }\) |
To show that $\mathscr C$ satisfies circuit axiom $(\text C 3')$, it needs to be shown that $F = \O$.
Aiming for a contradiction, suppose :
- $F \neq \O$
Let $\tuple{C_1, C_2, z, w} \in F$ :
- $\size{C_1 \cup C_2} = \min \set{\size{C \cup D} : \tuple{C, D, x, y} \in F}$
By circuit axiom $(\text C 3)$:
- $\exists C_3 \in \mathscr C : C_3 \subseteq \paren{C_1 \cup C_2} \setminus \set z$
By assumptiom:
- $w \notin C_3$
Consider $C_3 \cap \paren{C_2 \setminus C_1}$.
By circuit axiom $(\text C 2)$:
- $C_3 \nsubseteq C_1$
From Set Difference and Intersection form Partition:
- $C_3 \cap \paren{C_2 \setminus C_1} \neq \O$
Let $x \in C_3 \cap \paren{C_2 \setminus C_1}$.
We have:
- $x \in C_3 \cap C_2$
and
- $z \in C_2 \setminus C_3$
and
- $w \notin C_2 \cup C_3$
From Set is Subset of Union and Union of Subsets is Subset:
- $C_2 \cup C_3 \subseteq \C_1 \cup C_2$
Since $w \notin C_2 \cup C_3$:
- $C_2 \cup C_3$ is a proper subset of $C_1 \cup C_2$
By circuit axiom $(\text C 3)$ and the minimality of $C_1 \cup C_2$:
- $\exists C_4 \in \mathscr C : z \in C_4 \subseteq \paren{C_2 \cup C_3} \setminus \set{x}$
Now consider $C_1$ and $C_4$, we have:
- $z \in C_1 \cap C_4$
Since $w \notin C_2 \cup C_3$ then:
- $w \in C_1 \setminus C_4$
We have:
- $C_4 \subset C_2 \cup C_3 \subset C_1 \cup C_2$
From Set is Subset of Union and Union of Subsets is Subset:
- $C_1 \cup C_4 \subseteq C_1 \cup C_2$
Recall $x \in C_3 \cap \paren{C_2 \setminus C_1}$, then:
- $x \in C_2$
and
- $x \notin C_1$
Since $C_4 \subseteq \paren{C_2 \cup C_3} \setminus \set{x}$, then:
- $x \notin C_4$
It follows that:
- $x \notin C_1 \cup C_4$
and
- $x \in C_1 \cup C_2$
Hence:
- $C_1 \cup C_4$ is a proper subset of $C_1 \cup C_2$
By circuit axiom $(\text C 3)$ and the minimality of $C_1 \cup C_2$:
- $\exists C_5 \in \mathscr C : w \in C_5 \subseteq \paren{C_1 \cup C_4} \setminus \set{z}$
Since $C_1 \cup C_4 \subset C_1 \cup C_2$, then we have found $C_5$ such that:
- $w \in C_5 \subseteq \paren{C_1 \cup C_2} \setminus \set{z}$
This contradicts the fact that $\tuple{C_1, C_2, z, w} \in F$.
It follows that circuit axiom $(\text C 3')$ is satisfied.
$\Box$
Condition 2 implies Condition 4
We will define a mapping $\rho$ associated with $\mathscr C$.
It will be shown that $\rho$ is the rank function of a matroid $M$ which has $\mathscr C$ as the set of circuits.
For any ordered tuple $\tuple{x_1, \ldots, x_q}$ of elements of $S$, let $\map \theta {x_1, \ldots, x_q}$ be the ordered tuple defined by:
- $\forall i \in \set{1, \ldots, q} : \map \theta {x_1, \ldots, x_q}_i = \begin{cases} 0 & : \exists C \in \mathscr C : x_i \in C \subseteq \set{x_1, \ldots, x_i}\\ 1 & : \text {otherwise} \end{cases}$
Let $t$ be the mapping from the set of ordered tuple of $S$ defined by:
- $\map t {x_1, \ldots, x_q} = \ds \sum_{i = 1}^q \map \theta {x_1, \ldots, x_q}_i$
Lemma 1
Let $\tuple{x_1, \ldots, x_q}$ be any ordered tuple of elements of $S$.
Let $\pi$ be any permutation of $\tuple{x_1, \ldots, x_q}$.
Then:
- $\map t {x_1, \ldots, x_q} = \map t {x_{\map \pi 1}, \ldots, x_{\map \pi q}}$
$\Box$
Let $\rho : \powerset S \to \Z$ be the mapping defined by:
- $\forall A \subseteq S$:
- $\map \rho A = \begin{cases} 0 & : \text{if } A = \O \\ \map t {x_1, \ldots, x_q } & : \text{if } A = \set{x_1, \ldots, x_q} \end{cases}$
From Lemma 1:
- $\rho$ is well-defined
We now show that $\rho$ satisfies the rank function axioms:
\((\text R 1)\) | $:$ | \(\ds \map \rho \O = 0 \) | |||||||
\((\text R 2)\) | $:$ | \(\ds \forall X \in \powerset S \land y \in S:\) | \(\ds \map \rho X \le \map \rho {X \cup \set y} \le \map \rho X + 1 \) | ||||||
\((\text R 3)\) | $:$ | \(\ds \forall X \in \powerset S \land y, z \in S:\) | \(\ds \map \rho {X \cup \set y} = \map \rho {X \cup \set z} = \map \rho X \implies \map \rho {X \cup \set y \cup \set z} = \map \rho X \) |
$\rho$ satisfies $(\text R 1)$
Follows from the definition of $\rho$.
$\Box$
$\rho$ satisfies $(\text R 2)$
Let:
- $X = \set{x_1, \ldots, x_q} \subseteq S$ and $y \in S$
We have:
\(\ds \map \rho {X \cup \set y} - \map \rho X\) | \(=\) | \(\ds \map t {\tuple{x_1, \dots, x_q, y} } - \map t {\tuple{x_1, \dots, x_q} }\) | Definition of $\rho$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \map \theta {\tuple{x_1, \dots, x_q, y} }_{q+1}\) | Definition of $t$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \begin{cases} 0 & : \exists C \in \mathscr C : y \in C \subseteq \set{x_1, \ldots, x_q, y}\\ 1 & : \text {otherwise} \end{cases}\) | Definition of $\theta$ | |||||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds 0\) | \(\le\) | \(\ds \map \rho {X \cup \set y} - \map \rho X \le 1\) | |||||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds \map \rho X\) | \(\le\) | \(\ds \map \rho {X \cup \set y} \le \map \rho X + 1\) | Adding $\map \rho X$ to all terms |
$\Box$
Lemma 2
Let $X \subseteq S$ and $y \in S \setminus X$.
Then:
- $\map \rho {X \cup \set y} = \map \rho X$ if and only if $\exists C \in \mathscr C : y \in C \subseteq X \cup \set y$
$\Box$
$\rho$ satisfies $(\text R 3)$
Let:
- $X \subseteq S$ and $y, z \in S$
Let:
- $\map \rho {X \cup \set y} = \map \rho {X \cup \set z} = \map \rho X$
Case 1 : $z \in X$
Let $z \in X$.
Then:
- $\map \rho {X \cup \set {y,z}} = \map \rho {X \cup \set y}$
Since $\map \rho {X \cup \set y} = \map \rho X$, then:
- $\map \rho {X \cup \set {y,z}} = \map \rho X$
$\Box$
Case 2 : $z = y$
Let $z = y$.
Then
- $\map \rho {X \cup \set {y,z}} = \map \rho {X \cup \set y}$
Since $\map \rho {X \cup \set y} = \map \rho X$, then:
- $\map \rho {X \cup \set {y,z}} = \map \rho X$
$\Box$
Case 3 : $z \neq y$ and $z \notin X$
Let $z \neq y$ and $z \notin X$.
Then $z \notin X \cup \set y$.
From Lemma 2:
- $\exists C_z \in \mathscr C : z \in C_z \subseteq X \cup \set{z} \subseteq X \cup \set{y,z}$
From Lemma 2:
- $\map \rho {X \cup \set{y, z}} = \map \rho {X \cup \set y} = \map \rho X$
$\Box$
From Equivalence of Definitions of Matroid Rank Axioms:
- $\rho$ is the rank function of a matroid $M = \struct{S, \mathscr I}$ on $S$
Lemma 3
- $\mathscr C$ is the set of circuits of $M$.
$\Box$
Condition 4 implies Condition 1
Let $\mathscr C$ be the set of circuits of a matroid $M = \struct{S, \mathscr I}$ on $S$
$\mathscr C$ satisfies $(\text C 1)$
By definition of circuit of a matroid:
- for all $C \in \mathscr C: C$ is a dependent subset
By definition of a dependent subset:
- for all $C \in \mathscr C$, $C \notin \mathscr I$
By definition of a matroid:
- $\O \in \mathscr I$
Hence:
- $\O \notin \mathscr C$
It follows that $\mathscr C$ satisfies circuit axiom $(\text C 1)$.
$\Box$
$\mathscr C$ satisfies $(\text C 2)$
Let $C_1, C_2 \in \mathscr C : C_1 \neq C_2$.
By definition of circuit of a matroid:
- $C_2$ is a dependent subset of $S$ which is a minimal dependent subset
and
- $C_1$ is a dependent subset
Hence:
- $C_1 \nsubseteq C_2$
It follows that $\mathscr C$ satisfies circuit axiom $(\text C 2)$.
$\Box$
$\mathscr C$ satisfies $(\text C 3)$
Let $\rho$ denote the rank function of the matroid $M$.
Aiming for a contradiction, suppose $C_1, C_2 \in \mathscr C:$
- $C_1 \neq C_2$
and
- $\exists z \in C_1 \cap C_2 : \nexists C_3 \in \mathscr C : C_3 \subseteq \paren{C_1 \cup C_2} \setminus \set z$
From Proper Subset of Matroid Circuit is Independent:
- $\paren{C_1 \cup C_2} \setminus \set z$ is an independent subset.
Similarly:
- $\paren{C_1 \cap C_2}$ is an independent subset.
We have:
\(\ds \map \rho {C_1 \cup C_2}\) | \(\le\) | \(\ds \map \rho {C_1} + \map \rho {C_2} - \map \rho {C_1 \cap C_2}\) | Rank axiom $(\text R 3')$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren{\size {C_1} - 1} + \paren{\size {C_2} - 1} - \map \rho {C_1 \cap C_2}\) | Rank of Matroid Circuit is One Less Than Cardinality | |||||||||||
\(\ds \) | \(=\) | \(\ds \size {C_1} + \size {C_2} - 2 - \map \rho {C_1 \cap C_2}\) | Rank of Matroid Circuit is One Less Than Cardinality | |||||||||||
\(\ds \) | \(=\) | \(\ds \size {C_1 \cup C_2} + \size {C_1 \cap C_2} - 2 - \map \rho {C_1 \cap C_2}\) | Cardinality of Set Union | |||||||||||
\(\ds \) | \(=\) | \(\ds \size {C_1 \cup C_2} + \size {C_1 \cap C_2} - 2 - \size {C_1 \cap C_2}\) | Rank of Independent Subset Equals Cardinality | |||||||||||
\(\ds \) | \(=\) | \(\ds \size {C_1 \cup C_2} - 2\) | Cancelling terms | |||||||||||
\(\ds \) | \(=\) | \(\ds \size {C_1 \cup C_2} - \size { \set z} - 1\) | Cardinality of Singleton | |||||||||||
\(\ds \) | \(=\) | \(\ds \size {\paren{C_1 \cup C_2} \setminus \set z} - 1\) | Cardinality of Set Difference with Subset | |||||||||||
\(\ds \) | \(=\) | \(\ds \map \rho {\paren{C_1 \cup C_2} \setminus \set z} - 1\) | Rank of Independent Subset Equals Cardinality | |||||||||||
\(\ds \) | \(\le\) | \(\ds \map \rho {\paren{C_1 \cup C_2} } - 1\) | Rank Function is Increasing |
This is a contradiction.
It follows that $\mathscr C$ satisfies circuit axiom $(\text C 3)$.
$\Box$
Condition 1 implies Condition 3
We need to show that $\mathscr C$ satisfies circuit axiom:
\((\text C 3'')\) | $:$ | \(\ds \forall X \subseteq S \land \forall x \in S:\) | \(\ds \paren {\forall C \in \mathscr C : C \nsubseteq X} \implies \paren {\exists \text{ at most one } C \in \mathscr C : C \subseteq X \cup \set x} \) |
Let $X \subset S : \forall C \in \mathscr C : C \nsubseteq X$.
Let $x \in S$.
Aiming for a contradiction, suppose:
- $\exists C_1, C_2 \in \mathscr C : C_1 \neq C_2 : C_1, C_2 \subseteq X \cup \set x$.
Since $C_1, C_2 \nsubseteq X$ then:
- $x \in C_1 \cap C_2$
From circuit axiom $(\text C 3)$:
- $\exists C_3 \in \mathscr C : C_3 \subseteq \paren{C_1 \cup C_2} \setminus \set x$
We have:
- $\paren{C_1 \cup C_2} \setminus \set x \subseteq X$
Hence:
- $C_3 \subseteq X$
This contradicts the assumption that:
- $X \subset S : \forall C \in \mathscr C : C \nsubseteq X$
It follows that:
- $\exists \text{ at most one } C \in \mathscr C : C \subseteq X \cup \set x$
It follows that $\mathscr C$ satisfies circuit axiom $(\text C 3'')$.
$\Box$
Condition 3 implies Condition 1
We need to show that $\mathscr C$ satisfies circuit axiom:
\((\text C 3)\) | $:$ | \(\ds \forall C_1, C_2 \in \mathscr C:\) | \(\ds C_1 \ne C_2 \land z \in C_1 \cap C_2 \implies \exists C_3 \in \mathscr C : C_3 \subseteq \paren {C_1 \cup C_2} \setminus \set z \) |
In fact we prove the contrapositive statement:
\(\ds \forall C_1, C_2 \in \mathscr C:\) | \(\ds z \in C_1 \cap C_2 \land \paren{\forall C \in \mathscr C : C \nsubseteq \paren {C_1 \cup C_2} \setminus \set z} \implies C1 = C2 \) |
Let:
- $C_1, C_2 \in \mathscr C$
- $z \in C_1 \cap C_2$
- $\forall C \in \mathscr C : C \nsubseteq \paren{C_1 \cup C_2} \setminus \set z$
From circuit axiom $(\text C 3'')$:
- $\exists \text{ at most one } C \in \mathscr C : C \subseteq \paren{\paren{C_1 \cup C_2} \setminus \set z} \cup \set z = C_1 \cup C_2$
From Set is Subset of Union:
- $C_1, C_2 \subseteq C_1 \cup C_2$
Hence:
- $C_1 = C_2$
It follows that $\mathscr C$ satisfies circuit axiom $(\text C 3)$.
$\blacksquare$