Equivalence of Definitions of Matroid Circuit Axioms/Condition 1 Implies Condition 2
![]() | This article needs proofreading. Please check it for mathematical errors. If you believe there are none, please remove {{Proofread}} from the code.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Proofread}} from the code. |
Theorem
Let $S$ be a finite set.
Let $\mathscr C$ be a non-empty set of subsets of $S$.
Let $\mathscr C$ satisfy the circuit axioms:
\((\text C 1)\) | $:$ | \(\ds \O \notin \mathscr C \) | |||||||
\((\text C 2)\) | $:$ | \(\ds \forall C_1, C_2 \in \mathscr C:\) | \(\ds C_1 \ne C_2 \implies C_1 \nsubseteq C_2 \) | ||||||
\((\text C 3)\) | $:$ | \(\ds \forall C_1, C_2 \in \mathscr C:\) | \(\ds C_1 \ne C_2 \land z \in C_1 \cap C_2 \implies \exists C_3 \in \mathscr C : C_3 \subseteq \paren {C_1 \cup C_2} \setminus \set z \) |
Then:
- $\mathscr C$ satisfies the circuit axioms:
\((\text C 1)\) | $:$ | \(\ds \O \notin \mathscr C \) | |||||||
\((\text C 2)\) | $:$ | \(\ds \forall C_1, C_2 \in \mathscr C:\) | \(\ds C_1 \ne C_2 \implies C_1 \nsubseteq C_2 \) | ||||||
\((\text C 3')\) | $:$ | \(\ds \forall C_1, C_2 \in \mathscr C:\) | \(\ds C_1 \ne C_2 \land z \in C_1 \cap C_2 \land w \in C_1 \setminus C_2 \implies \exists C_3 \in \mathscr C : w \in C_3 \subseteq \paren {C_1 \cup C_2} \setminus \set z \) |
Proof
Let $\mathscr C$ satisfy the circuit axioms $(\text C 1)$, $(\text C 2)$ and $(\text C 3)$.
It has only to be shown that circuit axiom $(\text C 3')$ is satisfied by $\mathscr C$.
Let:
\(\ds F = \leftset{\tuple{C, D, x, y} }\) | \(:\) | \(\ds C, D \in \mathscr C \land C \neq D\) | ||||||||||||
\(\ds \) | \(\land\) | \(\ds x \in C \cap D \land y \in C \setminus D\) | ||||||||||||
\(\ds \) | \(\land\) | \(\ds \nexists C' \in \mathscr C : y \in C' \subseteq \paren{C \cup D} \setminus \set x \mathop {\rightset {} }\) |
To show that $\mathscr C$ satisfies circuit axiom $(\text C 3')$, it needs to be shown that $F = \O$.
Aiming for a contradiction, suppose :
- $F \neq \O$
Let $\tuple{C_1, C_2, z, w} \in F$ :
- $\size{C_1 \cup C_2} = \min \set{\size{C \cup D} : \tuple{C, D, x, y} \in F}$
By circuit axiom $(\text C 3)$:
- $\exists C_3 \in \mathscr C : C_3 \subseteq \paren{C_1 \cup C_2} \setminus \set z$
By assumptiom:
- $w \notin C_3$
Consider $C_3 \cap \paren{C_2 \setminus C_1}$.
By circuit axiom $(\text C 2)$:
- $C_3 \nsubseteq C_1$
From Set Difference and Intersection form Partition:
- $C_3 \cap \paren{C_2 \setminus C_1} \neq \O$
Let $x \in C_3 \cap \paren{C_2 \setminus C_1}$.
We have:
- $x \in C_3 \cap C_2$
and
- $z \in C_2 \setminus C_3$
and
- $w \notin C_2 \cup C_3$
From Set is Subset of Union and Union of Subsets is Subset:
- $C_2 \cup C_3 \subseteq \C_1 \cup C_2$
Since $w \notin C_2 \cup C_3$:
- $C_2 \cup C_3$ is a proper subset of $C_1 \cup C_2$
By circuit axiom $(\text C 3)$ and the minimality of $C_1 \cup C_2$:
- $\exists C_4 \in \mathscr C : z \in C_4 \subseteq \paren{C_2 \cup C_3} \setminus \set{x}$
Now consider $C_1$ and $C_4$, we have:
- $z \in C_1 \cap C_4$
Since $w \notin C_2 \cup C_3$ then:
- $w \in C_1 \setminus C_4$
We have:
- $C_4 \subset C_2 \cup C_3 \subset C_1 \cup C_2$
From Set is Subset of Union and Union of Subsets is Subset:
- $C_1 \cup C_4 \subseteq C_1 \cup C_2$
Recall $x \in C_3 \cap \paren{C_2 \setminus C_1}$, then:
- $x \in C_2$
and
- $x \notin C_1$
Since $C_4 \subseteq \paren{C_2 \cup C_3} \setminus \set{x}$, then:
- $x \notin C_4$
It follows that:
- $x \notin C_1 \cup C_4$
and
- $x \in C_1 \cup C_2$
Hence:
- $C_1 \cup C_4$ is a proper subset of $C_1 \cup C_2$
By circuit axiom $(\text C 3)$ and the minimality of $C_1 \cup C_2$:
- $\exists C_5 \in \mathscr C : w \in C_5 \subseteq \paren{C_1 \cup C_4} \setminus \set{z}$
Since $C_1 \cup C_4 \subset C_1 \cup C_2$, then we have found $C_5$ such that:
- $w \in C_5 \subseteq \paren{C_1 \cup C_2} \setminus \set{z}$
This contradicts the fact that $\tuple{C_1, C_2, z, w} \in F$.
It follows that circuit axiom $(\text C 3')$ is satisfied.
$\blacksquare$
Sources
- 1976: Dominic Welsh: Matroid Theory ... (previous) ... (next) Chapter $1.$ $\S 9.$ Circuits, Theorem $2$