Equivalence of Definitions of Matroid Circuit Axioms/Condition 1 Implies Condition 3
Jump to navigation
Jump to search
![]() | This article needs proofreading. Please check it for mathematical errors. If you believe there are none, please remove {{Proofread}} from the code.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Proofread}} from the code. |
Theorem
Let $S$ be a finite set.
Let $\mathscr C$ be a non-empty set of subsets of $S$.
Let $\mathscr C$ satisfy the circuit axioms:
\((\text C 1)\) | $:$ | \(\ds \O \notin \mathscr C \) | |||||||
\((\text C 2)\) | $:$ | \(\ds \forall C_1, C_2 \in \mathscr C:\) | \(\ds C_1 \ne C_2 \implies C_1 \nsubseteq C_2 \) | ||||||
\((\text C 3)\) | $:$ | \(\ds \forall C_1, C_2 \in \mathscr C:\) | \(\ds C_1 \ne C_2 \land z \in C_1 \cap C_2 \implies \exists C_3 \in \mathscr C : C_3 \subseteq \paren {C_1 \cup C_2} \setminus \set z \) |
Then:
- $\mathscr C$ satisfies the circuit axioms:
\((\text C 1)\) | $:$ | \(\ds \O \notin \mathscr C \) | |||||||
\((\text C 2)\) | $:$ | \(\ds \forall C_1, C_2 \in \mathscr C:\) | \(\ds C_1 \ne C_2 \implies C_1 \nsubseteq C_2 \) | ||||||
\((\text C 3'')\) | $:$ | \(\ds \forall X \subseteq S \land \forall x \in S:\) | \(\ds \paren {\forall C \in \mathscr C : C \nsubseteq X} \implies \paren {\exists \text{ at most one } C \in \mathscr C : C \subseteq X \cup \set x} \) |
Proof
We need to show that $\mathscr C$ satisfies circuit axiom:
\((\text C 3'')\) | $:$ | \(\ds \forall X \subseteq S \land \forall x \in S:\) | \(\ds \paren {\forall C \in \mathscr C : C \nsubseteq X} \implies \paren {\exists \text{ at most one } C \in \mathscr C : C \subseteq X \cup \set x} \) |
Let $X \subset S : \forall C \in \mathscr C : C \nsubseteq X$.
Let $x \in S$.
Aiming for a contradiction, suppose:
- $\exists C_1, C_2 \in \mathscr C : C_1 \neq C_2 : C_1, C_2 \subseteq X \cup \set x$.
Since $C_1, C_2 \nsubseteq X$ then:
- $x \in C_1 \cap C_2$
From circuit axiom $(\text C 3)$:
- $\exists C_3 \in \mathscr C : C_3 \subseteq \paren{C_1 \cup C_2} \setminus \set x$
We have:
- $\paren{C_1 \cup C_2} \setminus \set x \subseteq X$
Hence:
- $C_3 \subseteq X$
This contradicts the assumption that:
- $X \subset S : \forall C \in \mathscr C : C \nsubseteq X$
It follows that:
- $\exists \text{ at most one } C \in \mathscr C : C \subseteq X \cup \set x$
It follows that $\mathscr C$ satisfies circuit axiom $(\text C 3'')$.
$\blacksquare$