Equivalence of Definitions of Matroid Circuit Axioms/Condition 2 Implies Condition 4
![]() | This article needs proofreading. Please check it for mathematical errors. If you believe there are none, please remove {{Proofread}} from the code.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Proofread}} from the code. |
Theorem
Let $S$ be a finite set.
Let $\mathscr C$ be a non-empty set of subsets of $S$ that satisfies the circuit axioms:
\((\text C 1)\) | $:$ | \(\ds \O \notin \mathscr C \) | |||||||
\((\text C 2)\) | $:$ | \(\ds \forall C_1, C_2 \in \mathscr C:\) | \(\ds C_1 \ne C_2 \implies C_1 \nsubseteq C_2 \) | ||||||
\((\text C 3')\) | $:$ | \(\ds \forall C_1, C_2 \in \mathscr C:\) | \(\ds C_1 \ne C_2 \land z \in C_1 \cap C_2 \land w \in C_1 \setminus C_2 \implies \exists C_3 \in \mathscr C : w \in C_3 \subseteq \paren {C_1 \cup C_2} \setminus \set z \) |
Then:
Proof
We will define a mapping $\rho$ associated with $\mathscr C$.
It will be shown that $\rho$ is the rank function of a matroid $M$ which has $\mathscr C$ as the set of circuits.
For any ordered tuple $\tuple{x_1, \ldots, x_q}$ of elements of $S$, let $\map \theta {x_1, \ldots, x_q}$ be the ordered tuple defined by:
- $\forall i \in \set{1, \ldots, q} : \map \theta {x_1, \ldots, x_q}_i = \begin{cases} 0 & : \exists C \in \mathscr C : x_i \in C \subseteq \set{x_1, \ldots, x_i}\\ 1 & : \text {otherwise} \end{cases}$
Let $t$ be the mapping from the set of ordered tuple of $S$ defined by:
- $\map t {x_1, \ldots, x_q} = \ds \sum_{i = 1}^q \map \theta {x_1, \ldots, x_q}_i$
Lemma 1
Let $\tuple{x_1, \ldots, x_q}$ be any ordered tuple of elements of $S$.
Let $\pi$ be any permutation of $\tuple{x_1, \ldots, x_q}$.
Then:
- $\map t {x_1, \ldots, x_q} = \map t {x_{\map \pi 1}, \ldots, x_{\map \pi q}}$
$\Box$
Let $\rho : \powerset S \to \Z$ be the mapping defined by:
- $\forall A \subseteq S$:
- $\map \rho A = \begin{cases} 0 & : \text{if } A = \O \\ \map t {x_1, \ldots, x_q } & : \text{if } A = \set{x_1, \ldots, x_q} \end{cases}$
From Lemma 1:
- $\rho$ is well-defined
We now show that $\rho$ satisfies the rank function axioms:
\((\text R 1)\) | $:$ | \(\ds \map \rho \O = 0 \) | |||||||
\((\text R 2)\) | $:$ | \(\ds \forall X \in \powerset S \land y \in S:\) | \(\ds \map \rho X \le \map \rho {X \cup \set y} \le \map \rho X + 1 \) | ||||||
\((\text R 3)\) | $:$ | \(\ds \forall X \in \powerset S \land y, z \in S:\) | \(\ds \map \rho {X \cup \set y} = \map \rho {X \cup \set z} = \map \rho X \implies \map \rho {X \cup \set y \cup \set z} = \map \rho X \) |
$\rho$ satisfies $(\text R 1)$
Follows from the definition of $\rho$.
$\Box$
$\rho$ satisfies $(\text R 2)$
Let:
- $X = \set{x_1, \ldots, x_q} \subseteq S$ and $y \in S$
We have:
\(\ds \map \rho {X \cup \set y} - \map \rho X\) | \(=\) | \(\ds \map t {\tuple{x_1, \dots, x_q, y} } - \map t {\tuple{x_1, \dots, x_q} }\) | Definition of $\rho$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \map \theta {\tuple{x_1, \dots, x_q, y} }_{q+1}\) | Definition of $t$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \begin{cases} 0 & : \exists C \in \mathscr C : y \in C \subseteq \set{x_1, \ldots, x_q, y}\\ 1 & : \text {otherwise} \end{cases}\) | Definition of $\theta$ | |||||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds 0\) | \(\le\) | \(\ds \map \rho {X \cup \set y} - \map \rho X \le 1\) | |||||||||||
\(\ds \leadstoandfrom \ \ \) | \(\ds \map \rho X\) | \(\le\) | \(\ds \map \rho {X \cup \set y} \le \map \rho X + 1\) | Adding $\map \rho X$ to all terms |
$\Box$
Lemma 2
Let $X \subseteq S$ and $y \in S \setminus X$.
Then:
- $\map \rho {X \cup \set y} = \map \rho X$ if and only if $\exists C \in \mathscr C : y \in C \subseteq X \cup \set y$
$\Box$
$\rho$ satisfies $(\text R 3)$
Let:
- $X \subseteq S$ and $y, z \in S$
Let:
- $\map \rho {X \cup \set y} = \map \rho {X \cup \set z} = \map \rho X$
Case 1 : $z \in X$
Let $z \in X$.
Then:
- $\map \rho {X \cup \set {y,z}} = \map \rho {X \cup \set y}$
Since $\map \rho {X \cup \set y} = \map \rho X$, then:
- $\map \rho {X \cup \set {y,z}} = \map \rho X$
$\Box$
Case 2 : $z = y$
Let $z = y$.
Then
- $\map \rho {X \cup \set {y,z}} = \map \rho {X \cup \set y}$
Since $\map \rho {X \cup \set y} = \map \rho X$, then:
- $\map \rho {X \cup \set {y,z}} = \map \rho X$
$\Box$
Case 3 : $z \neq y$ and $z \notin X$
Let $z \neq y$ and $z \notin X$.
Then $z \notin X \cup \set y$.
From Lemma 2:
- $\exists C_z \in \mathscr C : z \in C_z \subseteq X \cup \set{z} \subseteq X \cup \set{y,z}$
From Lemma 2:
- $\map \rho {X \cup \set{y, z}} = \map \rho {X \cup \set y} = \map \rho X$
$\Box$
From Equivalence of Definitions of Matroid Rank Axioms:
- $\rho$ is the rank function of a matroid $M = \struct{S, \mathscr I}$ on $S$
Lemma 3
- $\mathscr C$ is the set of circuits of $M$.
$\blacksquare$
Sources
- 1976: Dominic Welsh: Matroid Theory ... (previous) Chapter $1.$ $\S 9.$ Circuits, Proof of Theorem $2.5$