Equivalence of Definitions of Matroid Circuit Axioms/Condition 4 Implies Condition 1
![]() | This article needs proofreading. Please check it for mathematical errors. If you believe there are none, please remove {{Proofread}} from the code.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Proofread}} from the code. |
Theorem
Let $S$ be a finite set.
Let $\mathscr C$ be a non-empty set of subsets of $S$.
Let $\mathscr C$ be the set of circuits of a matroid $M = \struct{S, \mathscr I}$ on $S$
Then:
- $\mathscr C$ satisfies the circuit axioms:
\((\text C 1)\) | $:$ | \(\ds \O \notin \mathscr C \) | |||||||
\((\text C 2)\) | $:$ | \(\ds \forall C_1, C_2 \in \mathscr C:\) | \(\ds C_1 \ne C_2 \implies C_1 \nsubseteq C_2 \) | ||||||
\((\text C 3)\) | $:$ | \(\ds \forall C_1, C_2 \in \mathscr C:\) | \(\ds C_1 \ne C_2 \land z \in C_1 \cap C_2 \implies \exists C_3 \in \mathscr C : C_3 \subseteq \paren {C_1 \cup C_2} \setminus \set z \) |
Proof
$\mathscr C$ satisfies $(\text C 1)$
By definition of circuit of a matroid:
- for all $C \in \mathscr C: C$ is a dependent subset
By definition of a dependent subset:
- for all $C \in \mathscr C$, $C \notin \mathscr I$
By definition of a matroid:
- $\O \in \mathscr I$
Hence:
- $\O \notin \mathscr C$
It follows that $\mathscr C$ satisfies circuit axiom $(\text C 1)$.
$\Box$
$\mathscr C$ satisfies $(\text C 2)$
Let $C_1, C_2 \in \mathscr C : C_1 \neq C_2$.
By definition of circuit of a matroid:
- $C_2$ is a dependent subset of $S$ which is a minimal dependent subset
and
- $C_1$ is a dependent subset
Hence:
- $C_1 \nsubseteq C_2$
It follows that $\mathscr C$ satisfies circuit axiom $(\text C 2)$.
$\Box$
$\mathscr C$ satisfies $(\text C 3)$
Let $\rho$ denote the rank function of the matroid $M$.
Aiming for a contradiction, suppose $C_1, C_2 \in \mathscr C:$
- $C_1 \neq C_2$
and
- $\exists z \in C_1 \cap C_2 : \nexists C_3 \in \mathscr C : C_3 \subseteq \paren{C_1 \cup C_2} \setminus \set z$
From Proper Subset of Matroid Circuit is Independent:
- $\paren{C_1 \cup C_2} \setminus \set z$ is an independent subset.
Similarly:
- $\paren{C_1 \cap C_2}$ is an independent subset.
We have:
\(\ds \map \rho {C_1 \cup C_2}\) | \(\le\) | \(\ds \map \rho {C_1} + \map \rho {C_2} - \map \rho {C_1 \cap C_2}\) | Rank axiom $(\text R 3')$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren{\size {C_1} - 1} + \paren{\size {C_2} - 1} - \map \rho {C_1 \cap C_2}\) | Rank of Matroid Circuit is One Less Than Cardinality | |||||||||||
\(\ds \) | \(=\) | \(\ds \size {C_1} + \size {C_2} - 2 - \map \rho {C_1 \cap C_2}\) | Rank of Matroid Circuit is One Less Than Cardinality | |||||||||||
\(\ds \) | \(=\) | \(\ds \size {C_1 \cup C_2} + \size {C_1 \cap C_2} - 2 - \map \rho {C_1 \cap C_2}\) | Cardinality of Set Union | |||||||||||
\(\ds \) | \(=\) | \(\ds \size {C_1 \cup C_2} + \size {C_1 \cap C_2} - 2 - \size {C_1 \cap C_2}\) | Rank of Independent Subset Equals Cardinality | |||||||||||
\(\ds \) | \(=\) | \(\ds \size {C_1 \cup C_2} - 2\) | Cancelling terms | |||||||||||
\(\ds \) | \(=\) | \(\ds \size {C_1 \cup C_2} - \size { \set z} - 1\) | Cardinality of Singleton | |||||||||||
\(\ds \) | \(=\) | \(\ds \size {\paren{C_1 \cup C_2} \setminus \set z} - 1\) | Cardinality of Set Difference with Subset | |||||||||||
\(\ds \) | \(=\) | \(\ds \map \rho {\paren{C_1 \cup C_2} \setminus \set z} - 1\) | Rank of Independent Subset Equals Cardinality | |||||||||||
\(\ds \) | \(\le\) | \(\ds \map \rho {\paren{C_1 \cup C_2} } - 1\) | Rank Function is Increasing |
This is a contradiction.
It follows that $\mathscr C$ satisfies circuit axiom $(\text C 3)$.
$\blacksquare$
Sources
- 1976: Dominic Welsh: Matroid Theory ... (previous) ... (next) Chapter $1.$ $\S 9.$ Circuits