Equivalence of Definitions of Matroid Circuit Axioms/Lemma 1
![]() | This article needs proofreading. Please check it for mathematical errors. If you believe there are none, please remove {{Proofread}} from the code.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Proofread}} from the code. |
Theorem
Let $S$ be a finite set.
Let $\mathscr C$ be a non-empty set of subsets of $S$ that satisfies the circuit axioms:
\((\text C 1)\) | $:$ | \(\ds \O \notin \mathscr C \) | |||||||
\((\text C 2)\) | $:$ | \(\ds \forall C_1, C_2 \in \mathscr C:\) | \(\ds C_1 \ne C_2 \implies C_1 \nsubseteq C_2 \) | ||||||
\((\text C 3')\) | $:$ | \(\ds \forall C_1, C_2 \in \mathscr C:\) | \(\ds C_1 \ne C_2 \land z \in C_1 \cap C_2 \land w \in C_1 \setminus C_2 \implies \exists C_3 \in \mathscr C : w \in C_3 \subseteq \paren {C_1 \cup C_2} \setminus \set z \) |
For any ordered tuple $\tuple{x_1, \ldots, x_q}$ of elements of $S$, let $\map \theta {x_1, \ldots, x_q}$ be the ordered tuple defined by:
- $\forall i \in \set{1, \ldots, q} : \map \theta {x_1, \ldots, x_q}_i = \begin{cases} 0 & : \exists C \in \mathscr C : x_i \in C \subseteq \set{x_1, \ldots, x_i}\\ 1 & : \text {otherwise} \end{cases}$
Let $t$ be the mapping from the set of ordered tuple of $S$ defined by:
- $\map t {x_1, \ldots, x_q} = \ds \sum_{i = 1}^q \map \theta {x_1, \ldots, x_q}_i$
Let $\tuple{x_1, \ldots, x_q}$ be any ordered tuple of elements of $S$.
Let $\pi$ be any permutation of $\tuple{x_1, \ldots, x_q}$.
Then:
- $\map t {x_1, \ldots, x_q} = \map t {x_{\map \pi 1}, \ldots, x_{\map \pi q}}$
Proof
It is sufficient to show that:
- $\forall 1 \le i \le q-1 : \map t {x_1, \ldots, x_i, x_{i + 1}, \ldots, x_q} = \map t {x_1, \ldots, x_{i + 1}, x_i, \ldots, x_q}$
By definition of $t$, we have:
- $\map t {x_1, \ldots, x_i, x_{i + 1}, \ldots, x_q} = \sum_{j = 1}^{i - 1} \map \theta {x_1, \ldots, x_q}_j + \map \theta {x_1, \ldots, x_q}_i + \map \theta {x_1, \ldots, x_q}_{i + 1} + \sum_{j = {i + 2} }^q \map \theta {x_i + 2, \ldots, x_q}_j$
Similarly:
- $\map t {x_1, \ldots, x_{i + 1}, x_i, \ldots, x_q} = \sum_{j = 1}^{i - 1} \map \theta {x_1, \ldots, x_q}_j + \map \theta {x_1, \ldots, x_q}_{i + 1} + \map \theta {x_1, \ldots, x_q}_i + \sum_{j = {i + 2} }^q \map \theta {x_i + 2, \ldots, x_q}_j$
By definition of $\theta$:
- $\sum_{j = {i + 2} }^q \map \theta {x_i + 2, \ldots, x_q}_j$ is independent of the order of the tuple $\tuple{x_1, \ldots, x_{i - 1}, x_i, x_{i + 1}}$
So it is sufficient to show that:
- $\forall 1 \le i \le q-1 : \map t {x_1, \ldots, x_i, x_{i + 1}} = \map t {x_1, \ldots, x_{i + 1}, x_i}$
Let:
- $a = \map t {x_1, \ldots, x_{i - 1}}$
- $a_1 = \map t {x_1, \ldots, x_{i - 1}, x_i} = a + \map \theta {x_1, \ldots, x_{i - 1}, x_i}_i$
- $a_2 = \map t {x_1, \ldots, x_{i - 1}, x_{i + 1}} = a + \map \theta {x_1, \ldots, x_{i - 1}, x_{i + 1}}_i$
- $a_{12} = \map t {x_1, \ldots, x_{i - 1}, x_i, x_{i + 1}} = a_1 + \map \theta {x_1, \ldots, x_{i - 1}, x_i, x_{i + 1}}_{i+1}$
- $a_{21} = \map t {x_1, \ldots, x_{i - 1}, x_{i + 1}, x_i} = a_2 + \map \theta {x_1, \ldots, x_{i - 1}, x_{i + 1}, x_i}_{i+1}$
We consider the following cases:
- $\begin{array}{c|cccc} \text{Case} & \map \theta {x_1, \ldots, x_{i - 1}, x_i}_i & \map \theta {x_1, \ldots, x_{i - 1}, x_{i + 1}}_i & \map \theta {x_1, \ldots, x_{i - 1}, x_i, x_{i + 1}}_{i+1} \\ \hline \text{Case } 1 & 1 & 1 & 1 \\ \text{Case } 2 & 1 & 1 & 0 \\ \text{Case } 3 & 1 & 0 & 1 \\ \text{Case } 4 & 1 & 0 & 0 \\ \text{Case } 5 & 0 & 1 & 1 \\ \text{Case } 6 & 0 & 1 & 0 \\ \text{Case } 7 & 0 & 0 & 1 \\ \text{Case } 8 & 0 & 0 & 0 \\ \end{array}$
Case 1
Let:
- $\map \theta {x_1, \ldots, x_{i - 1}, x_i}_i = 1$
- $\map \theta {x_1, \ldots, x_{i - 1}, x_{i + 1}}_i = 1$
- $\map \theta {x_1, \ldots, x_{i - 1}, x_i, x_{i + 1}}_{i+1} = 1$
We have: $a_1 = a + 1 = a_2$
Aiming for a contradiction, suppose:
- $\map \theta {x_1, \ldots, x_{i - 1}, x_{i + 1}, x_i}_{i+1} = 0$
By definition of $\theta$:
- $\exists C \in \mathscr C : x_i \in C \subseteq \set{x_1, \ldots, x_{i - 1}, x_{i + 1}, x_i}$
and
- $\nexists C \in \mathscr C : x_i \in C \subseteq \set{x_1, \ldots, x_{i - 1}, x_i}$
Hence: $x_{i + 1} \in C$
It follows that:
- $\exists C \in \mathscr C : x_{i + 1} \in C \subseteq \set{x_1, \ldots, x_{i - 1}, x_i, x_{i + 1}}$
This contradicts the assumption that:
- $\map \theta {x_1, \ldots, x_{i - 1}, x_i, x_{i + 1}}_{i+1} = 1$
Hence:
$\map \theta {x_1, \ldots, x_{i - 1}, x_{i + 1}, x_i}_{i+1} = 1$
It follows that:
- $a_{12} = a_1 + 1 = a_2 + 1 = a_{21}$
$\Box$
Case 2
Let:
- $\map \theta {x_1, \ldots, x_{i - 1}, x_i}_i = 1$
- $\map \theta {x_1, \ldots, x_{i - 1}, x_{i + 1}}_i = 1$
- $\map \theta {x_1, \ldots, x_{i - 1}, x_i, x_{i + 1}}_{i+1} = 0$
$\Box$
We have: $a_1 = a + 1 = a_2$
By definition of $\theta$:
- $\exists C \in \mathscr C : x_i \in C \subseteq \set{x_1, \ldots, x_{i - 1}, x_{i + 1}, x_i}$
and
- $\nexists C \in \mathscr C : x_i \in C \subseteq \set{x_1, \ldots, x_{i - 1}, x_i}$
Hence: $x_{i + 1} \in C$
It follows that:
- $\exists C \in \mathscr C : x_{i + 1} \in C \subseteq \set{x_1, \ldots, x_{i - 1}, x_i, x_{i + 1}}$
Hence:
$\map \theta {x_1, \ldots, x_{i - 1}, x_{i + 1}, x_i}_{i+1} = 0$
It follows that:
- $a_{12} = a_1 = a_2 = a_{21}$
$\Box$
Cases 3 and 7
Common to cases 3 and 7 are the conditions $\map \theta {x_1, \ldots, x_{i - 1}, x_{i + 1}}_i = 0$ and $\map \theta {x_1, \ldots, x_{i - 1}, x_i, x_{i + 1}}_{i+1} = 1$.
Let:
- $\map \theta {x_1, \ldots, x_{i - 1}, x_{i + 1}}_i = 0$
- $\map \theta {x_1, \ldots, x_{i - 1}, x_i, x_{i + 1}}_{i+1} = 1$
By definition of $\theta$:
- $\exists C \in \mathscr C : x_i \in C_1 \subseteq \set{x_1, \ldots, x_{i - 1}, x_{i+1}}$
From Subset Relation is Transitive:
- $\exists C \in \mathscr C : x_i \in C \subseteq \set{x_1, \ldots, x_{i - 1}, x_i, x_{i + 1}}_{i+1}$
By definition of $\theta$:
- $\map \theta {x_1, \ldots, x_{i - 1}, x_i, x_{i + 1}}_{i+1} = 0$
This contradicts the assumption that:
- $\map \theta {x_1, \ldots, x_{i - 1}, x_i, x_{i + 1}}_{i+1} = 1$
Hence these cases can't occur.
$\Box$
Case 4
Let:
- $\map \theta {x_1, \ldots, x_{i - 1}, x_i}_i = 0$
- $\map \theta {x_1, \ldots, x_{i - 1}, x_{i + 1}}_i = 1$
- $\map \theta {x_1, \ldots, x_{i - 1}, x_i, x_{i + 1}}_{i+1} = 0$
We have:
- $a_1 = a$ and $a_2 = a + 1$
By definition of $\theta$:
- $\exists C_1 \in \mathscr C : x_{i+1} \in C_1 \subseteq \set{x_1, \ldots, x_{i - 1}, x_i, x_{i+1}}$
and
- $\nexists C \in \mathscr C : x_{i+1} \in C \subseteq \set{x_1, \ldots, x_{i - 1}, x_{i+1}}$
Hence:
- $x_i \in C_1$
By definition of $\theta$:
- $\exists C_2 \in \mathscr C : x_i \in C_2 \subseteq \set{x_1, \ldots, x_{i - 1}, x_i}$
Hence:
- $x_i \in C_1 \cap C_2$
and
- $x_{i+1} \in C_2 \setminus C_1$
By matroid circuit axiom $(\text C 3)$:
- $\exists C_3 \in \mathscr C : x_{i+1} \in C_3 \subseteq \paren{C_1 \cup C_2} \setminus \set {x_i}$
From Union of Subsets is Subset:
- $C_1 \cup C_2 \subseteq \set{x_1, \ldots, x_{i - 1}, x_i, x_{i+1}}$
From Set Difference over Subset:
- $\paren{C_1 \cup C_2} \setminus \set {x_i} \subseteq \set{x_1, \ldots, x_{i - 1}, x_i, x_{i+1}} \setminus \set {x_i} = \set{x_1, \ldots, x_{i - 1}, x_{i+1}}$
From Subset Relation is Transitive:
- $\exists C_3 \in \mathscr C : x_{i+1} \in C_3 \subseteq \set{x_1, \ldots, x_{i - 1}, x_{i+1}}$
By definition of $\theta$:
- $\map \theta {x_1, \ldots, x_{i - 1}, x_{i + 1}}_i = 0$
This contradicts the assumption that:
- $\map \theta {x_1, \ldots, x_{i - 1}, x_{i + 1}}_i = 1$
Hence this case can't occur.
$\Box$
Case 5
Let:
- $\map \theta {x_1, \ldots, x_{i - 1}, x_i}_i = 0$
- $\map \theta {x_1, \ldots, x_{i - 1}, x_{i + 1}}_i = 1$
- $\map \theta {x_1, \ldots, x_{i - 1}, x_i, x_{i + 1}}_{i+1} = 1$
We have:
- $a_1 = a$ and $a_2 = a + 1$
By definition of $\theta$:
- $\exists C \in \mathscr C : x_i \in C \subseteq \set{x_1, \ldots, x_{i - 1}, x_i}$
From Subset Relation is Transitive:
- $\exists C \in \mathscr C : x_i \in C \subseteq \set{x_1, \ldots, x_{i - 1}, x_{i+1}, x_i}$
By definition of $\theta$:
- $\map \theta {x_1, \ldots, x_{i - 1}, x_{i + 1}, x_i}_{i+1} = 0$
It follows that:
- $a_{12} = a_1 + 1 = a + 1 = a_2 + 1 = a_{21}$
$\Box$
Case 6
Let:
- $\map \theta {x_1, \ldots, x_{i - 1}, x_i}_i = 1$
- $\map \theta {x_1, \ldots, x_{i - 1}, x_{i + 1}}_i = 0$
- $\map \theta {x_1, \ldots, x_{i - 1}, x_i, x_{i + 1}}_{i+1} = 0$
We have:
- $a_1 = a + 1$ and $a_2 = a$
Aiming for a contradiction, suppose $\map \theta {x_1, \ldots, x_{i - 1}, x_{i+1}, x_i}_{i+1} = 0$.
By definition of $\theta$:
- $\exists C_1 \in \mathscr C : x_i \in C_1 \subseteq \set{x_1, \ldots, x_{i - 1}, x_{i+1}, x_i}$
and
- $\nexists C \in \mathscr C : x_i \in C \subseteq \set{x_1, \ldots, x_{i - 1}, x_i}$
Hence: $x_{i+1} \in C_1$
By definition of $\theta$:
- $\exists C_2 \in \mathscr C : x_{i+1} \in C_2 \subseteq \set{x_1, \ldots, x_{i - 1}, x_{i+1}}$
Hence:
- $x_{i+1} \in C_1 \cap C_2$
and
- $x_i \in C_1 \setminus C_2$
By matroid circuit axiom $(\text C 3)$:
- $\exists C_3 \in \mathscr C : x_i \in C_3 \subseteq \paren{C_1 \cup C_2} \setminus \set {x_{i+1}}$
From Union of Subsets is Subset:
- $C_1 \cup C_2 \subseteq \set{x_1, \ldots, x_{i - 1}, x_i, x_{i+1}}$
From Set Difference over Subset:
- $\paren{C_1 \cup C_2} \setminus \set {x_{i+1}} \subseteq \set{x_1, \ldots, x_{i - 1}, x_i, x_{i+1}} \setminus \set {x_{i+1}} = \set{x_1, \ldots, x_{i - 1}, x_i}$
From Subset Relation is Transitive:
- $\exists C_3 \in \mathscr C : x_i \in C_3 \subseteq \set{x_1, \ldots, x_{i - 1}, x_i}$
By definition of $\theta$:
- $\map \theta {x_1, \ldots, x_{i - 1}, x_i}_i = 0$
This contradicts the assumption that:
- $\map \theta {x_1, \ldots, x_{i - 1}, x_{i + 1}}_i = 1$
Hence:
- $\map \theta {x_1, \ldots, x_{i - 1}, x_{i+1}, x_i}_{i+1} = 1$
We have:
- $a_{12} = a_1 + 0 = a + 1 = a_2 + 1 = a_{21}$
$\Box$
Case 8
Let:
- $\map \theta {x_1, \ldots, x_{i - 1}, x_i}_i = 0$
- $\map \theta {x_1, \ldots, x_{i - 1}, x_{i + 1}}_i = 0$
- $\map \theta {x_1, \ldots, x_{i - 1}, x_i, x_{i + 1}}_{i+1} = 0$
We have:
- $a_1 = a = a_2$
By definition of $\theta$:
- $\exists C \in \mathscr C : x_i \in C \subseteq \set{x_1, \ldots, x_{i - 1}, x_i}$
From Subset Relation is Transitive:
- $\exists C \in \mathscr C : x_i \in C \subseteq \set{x_1, \ldots, x_{i - 1}, x_{i+1}, x_i}$
By definition of $\theta$:
- $\map \theta {x_1, \ldots, x_{i - 1}, x_{i + 1}, x_i}_{i+1} = 0$
We have:
- $a_{12} = a_1 = a = a_2 = a_{21}$
$\Box$
The cases are exhaustive and in all possible cases:
- $a_{12} = a_{21}$
That is:
- $\map t {x_1, \ldots, x_{i - 1}, x_i, x_{i + 1}} = \map t {x_1, \ldots, x_{i - 1}, x_{i + 1}, x_i}$
The result follows.
$\blacksquare$