Equivalence of Definitions of P-adic Integer/Definition 2 Implies Definition 1

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $\struct {\Q_p, \norm {\,\cdot\,}_p}$ be the valued field of $p$-adic numbers for some prime $p$.

That is, such that:

$\Q_p$ is the field of $p$-adic numbers
$\norm {\,\cdot\,}_p$ is the $p$-adic norm on $\Q_p$.


Let $x \in \Q_p$ such that the canonical expansion of $x$ contains only positive powers of $p$.


Then:

$\norm x_p \le 1$


Proof

Let the canonical expansion of $x$ contain only positive powers of $p$.

That is:

$x = \ds \sum_{n \mathop = 0}^\infty d_n p^n : \forall n \in \N : 0 \le d_n < p$


Case 1 : $\forall n \in \N : d_n = 0$

Let:

$\forall n \in \N : d_n = 0$

Then:

\(\ds x\) \(=\) \(\ds \sum_{n \mathop = 0}^\infty 0 * p^n\) Definition of Canonical P-adic Expansion
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 0}^\infty 0\)
\(\ds \) \(=\) \(\ds 0\)

Hence:

\(\ds \norm x_p\) \(=\) \(\ds \norm 0_p\)
\(\ds \) \(=\) \(\ds 0\)
\(\ds \) \(<\) \(\ds 1\)

$\Box$


Case 2 : $\exists n \in \N : d_n > 0$

Let:

$\exists n \in \N : d_n > 0$


Let:

$l = \min \set {i: i \ge 0 \land d_i \ne 0}$

Hence:

$l \ge 0$


Thus:

\(\ds \norm x_p\) \(=\) \(\ds p^{-l}\) P-adic Norm of P-adic Expansion is determined by First Nonzero Coefficient
\(\ds \) \(\le\) \(\ds p^0\)
\(\ds \) \(=\) \(\ds 1\)

$\blacksquare$