Equivalence of Definitions of Preordering

From ProofWiki
Jump to navigation Jump to search

Theorem

The following definitions of the concept of Preordering are equivalent:

Definition 1

$\RR$ is a preordering on $S$ if and only if $\RR$ satifies the preordering axioms:

\((1)\)   $:$   $\RR$ is reflexive      \(\ds \forall a \in S:\) \(\ds a \mathrel \RR a \)      
\((2)\)   $:$   $\RR$ is transitive      \(\ds \forall a, b, c \in S:\) \(\ds a \mathrel \RR b \land b \mathrel \RR c \implies a \mathrel \RR c \)      


Definition 2

$\RR$ is a preordering on $S$ if and only if $\RR$ satifies the preordering axioms:

\((1)\)   $:$   $\RR$ is transitive    \(\ds \RR \circ \RR = \RR \)      
\((2)\)   $:$   $\RR$ is reflexive    \(\ds \Delta_S \subseteq \RR \)      

where:

$\circ$ denotes relation composition
$\Delta_S$ denotes the diagonal relation on $S$.


Proof

Definition 1 implies Definition 2

Let $\RR$ be a relation on $S$ satisfying:

\((1)\)   $:$   $\RR$ is reflexive      \(\ds \forall a \in S:\) \(\ds a \mathrel \RR a \)      
\((2)\)   $:$   $\RR$ is transitive      \(\ds \forall a, b, c \in S:\) \(\ds a \mathrel \RR b \land b \mathrel \RR c \implies a \mathrel \RR c \)      


By Reflexive and Transitive Relation is Idempotent:

$\RR \circ \RR = \RR$

which is condition $(1)$ of definition 2.


By definition of reflexive relation:

$\RR$ is reflexive if and only if it is a superset of the diagonal relation:
$\Delta_S \subseteq \RR$

which is condition $(2)$ of definition 2.


Thus $\RR$ is an ordering by definition 2.

$\Box$


Definition 2 implies Definition 1

Let $\RR$ be a relation which fulfils the conditions:

$(1): \quad \RR \circ \RR = \RR$
$(2): \quad \Delta_S \subseteq \RR$


By definition of set equality, it follows from $(1)$:

$\RR \circ \RR \subseteq \RR$

Thus, by definition, $\RR$ is transitive.


By definition of reflexive relation:

$\RR$ is reflexive if and only if it is a superset of the diagonal relation:
$\Delta_S \subseteq \RR$


Thus $\RR$ is an ordering by definition 1.

$\blacksquare$