Equivalence of Definitions of Real Area Hyperbolic Cosecant

From ProofWiki
Jump to navigation Jump to search

Theorem

The following definitions of the concept of Real Area Hyperbolic Cosecant are equivalent:

Definition 1

The inverse hyperbolic cosecant $\arcsch: \R_{\ne 0} \to \R$ is a real function defined on the non-zero real numbers $\R_{\ne 0}$ as:

$\forall x \in \R_{\ne 0}: \map \arcsch x := y \in \R: x = \map \csch y$

where $\map \csch y$ denotes the hyperbolic cosecant function of $y$.

Definition 2

The inverse hyperbolic cosecant $\arcsch: \R_{\ne 0} \to \R$ is a real function defined on the non-zero real numbers $\R_{\ne 0}$ as:

$\forall x \in \R_{\ne 0}: \map \arcsch x := \map \ln {\dfrac 1 x + \dfrac {\sqrt {x^2 + 1} } {\size x} }$

where:

$\sqrt {x^2 + 1}$ denotes the positive square root of $x^2 + 1$
$\ln$ denotes the natural logarithm of a (strictly positive) real number.


Proof

Definition 1 implies Definition 2

\(\ds x\) \(=\) \(\ds \csch y\)
\(\ds \leadsto \ \ \) \(\ds \dfrac 1 x\) \(=\) \(\ds \sinh y\) Definition of Hyperbolic Cosecant
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds \map \ln {\dfrac 1 x + \sqrt {\paren {\dfrac 1 x}^2 + 1} }\) Definition of Real Inverse Hyperbolic Sine
\(\ds \) \(=\) \(\ds \map \ln {\dfrac 1 x + \sqrt {\dfrac {1 + x^2} {x^2} } }\)


If $x \ge 0$, then:

\(\ds \map \ln {\dfrac 1 x + \sqrt {\dfrac {1 + x^2} {x^2} } }\) \(=\) \(\ds \map \ln {\dfrac 1 x + \dfrac {\sqrt {1 + x^2} } x}\) Positive Square Root is Positive


If $x < 0$, then:

\(\ds \map \ln {\dfrac 1 x + \sqrt {\dfrac {1 + x^2} {x^2} } }\) \(=\) \(\ds \map \ln {\dfrac 1 x + \dfrac {\sqrt {1 + x^2} } {-x} }\) Positive Square Root is Positive

That is:

$y = \map \ln {\dfrac 1 x + \dfrac {\sqrt {1 + x^2} } {\size x} }$

$\Box$


Definition 2 implies Definition 1

\(\ds y\) \(=\) \(\ds \map \ln {\dfrac 1 x + \dfrac {\sqrt {1 + x^2} } {\size x} }\)
\(\ds \) \(=\) \(\ds \map \ln {\dfrac 1 x + \sqrt {\dfrac {1 + x^2} {x^2} } }\)
\(\ds \) \(=\) \(\ds \map \ln {\dfrac 1 x + \sqrt {\dfrac 1 {x^2} + 1} }\)
\(\ds \) \(=\) \(\ds \arsinh \dfrac 1 x\) Definition of Real Area Hyperbolic Sine
\(\ds \leadsto \ \ \) \(\ds \dfrac 1 x\) \(=\) \(\ds \sinh y\) Definition of Hyperbolic Sine
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds \csch y\) Definition of Hyperbolic Cosecant

$\Box$


Therefore:

\(\text {(1)}: \quad\) \(\ds x = \csch y\) \(\implies\) \(\ds y = \map \ln {\dfrac 1 x + \dfrac {\sqrt {1 + x^2} } {\size x} }\) Definition 1 implies Definition 2
\(\text {(2)}: \quad\) \(\ds y = \map \ln {\dfrac 1 x + \dfrac {\sqrt {1 + x^2} } {\size x} }\) \(\implies\) \(\ds x = \csch y\) Definition 2 implies Definition 1
\(\ds \leadsto \ \ \) \(\ds x = \csch y\) \(\iff\) \(\ds y = \map \ln {\dfrac 1 x + \dfrac {\sqrt {1 + x^2} } {\size x} }\)

$\blacksquare$


Also see