Equivalence of Definitions of Real Area Hyperbolic Sine

From ProofWiki
Jump to navigation Jump to search

Theorem

The following definitions of the concept of Real Area Hyperbolic Sine are equivalent:

Definition 1

The inverse hyperbolic sine $\arsinh: \R \to \R$ is a real function defined on $\R$ as:

$\forall x \in \R: \map \arsinh x := y \in \R: x = \map \sinh y$

where $\map \sinh y$ denotes the hyperbolic sine function.

Definition 2

The inverse hyperbolic sine $\arsinh: \R \to \R$ is a real function defined on $\R$ as:

$\forall x \in \R: \map \arsinh x := \map \ln {x + \sqrt {x^2 + 1} }$

where:

$\ln$ denotes the natural logarithm of a (strictly positive) real number
$\sqrt {x^2 + 1}$ denotes the positive square root of $x^2 + 1$.


Proof

Definition 1 implies Definition 2

Let $x = \sinh y$.

Let $z = e^y$.

Then:

\(\ds x\) \(=\) \(\ds \frac {e^y - e^{- y} } 2\) Definition of Hyperbolic Sine
\(\ds \leadsto \ \ \) \(\ds 2 x\) \(=\) \(\ds e^y - e^{- y}\)
\(\ds \leadsto \ \ \) \(\ds 2 x e^y\) \(=\) \(\ds e^{2 y} - 1\)
\(\ds \leadsto \ \ \) \(\ds z^2 - 2 x z - 1\) \(=\) \(\ds 0\) Power of Power
\(\ds \leadsto \ \ \) \(\ds z\) \(=\) \(\ds \frac {2 x \pm \sqrt {\paren {-2 x}^2 + 4} } 2\) Quadratic Formula
\(\ds \) \(=\) \(\ds x \pm \sqrt {x^2 + 1}\)
\(\ds \leadsto \ \ \) \(\ds e^y\) \(=\) \(\ds x \pm \sqrt {x^2 + 1}\)
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds \map \ln {x \pm \sqrt {x^2 + 1} }\)


If $x \ge 0$, then:

\(\ds \sqrt {x^2 + 1}\) \(>\) \(\ds \sqrt {x^2}\) Square Root is Strictly Increasing
\(\ds \) \(=\) \(\ds x\)
\(\ds \leadsto \ \ \) \(\ds \sqrt {x^2 + 1}\) \(>\) \(\ds x\)
\(\ds \leadsto \ \ \) \(\ds x - \sqrt {x^2 + 1}\) \(<\) \(\ds 0\)


If $x < 0$, then:

\(\text {(1)}: \quad\) \(\ds -\sqrt {x^2 + 1}\) \(<\) \(\ds 0\) Positive Square Root is Positive
\(\text {(2)}: \quad\) \(\ds x\) \(<\) \(\ds 0\) Assumption
\(\ds x - \sqrt {x^2 + 1}\) \(<\) \(\ds 0\) $(1) + (2)$


Since the natural logarithm of a negative number is not defined:

$y = \map \ln {x + \sqrt {x^2 + 1} }$

$\Box$


Definition 2 implies Definition 1

Let $y = x + \sqrt {x^2 + 1}$.

\(\ds \map \sinh {\map \ln {x + \sqrt {x^2 + 1} } }\) \(=\) \(\ds \map \sinh {\ln y}\)
\(\ds \) \(=\) \(\ds \frac {e^{\ln y} - e^{-\ln y} } 2\) Definition of Hyperbolic Sine
\(\ds \) \(=\) \(\ds \frac {y - \frac 1 y} 2\)
\(\ds \) \(=\) \(\ds \frac {y^2 - 1} {2 y}\)
\(\ds \) \(=\) \(\ds \frac {\paren {x + \sqrt {x^2 + 1} }^2 - 1} {2 x + 2 \sqrt {x^2 + 1} }\)
\(\ds \) \(=\) \(\ds \frac {x^2 + 2 x \sqrt {x^2 + 1} + \paren {x^2 + 1} - 1} {2 x + 2 \sqrt {x^2 + 1} }\)
\(\ds \) \(=\) \(\ds \frac {2 x^2 + 2 x \sqrt {x^2 + 1} } {2 x + 2 \sqrt {x^2 + 1} }\)
\(\ds \) \(=\) \(\ds \frac {\paren {2 x + 2 \sqrt {x^2 + 1} } x} {2 x + 2 \sqrt {x^2 + 1} }\)
\(\ds \) \(=\) \(\ds x\)

$\Box$


Therefore:

\(\text {(1)}: \quad\) \(\ds x = \sinh y\) \(\implies\) \(\ds y = \map \ln {x + \sqrt {x^2 + 1} }\) Definition 1 implies Definition 2
\(\text {(2)}: \quad\) \(\ds y = \map \ln {x + \sqrt {x^2 + 1} }\) \(\implies\) \(\ds x = \sinh y\) Definition 2 implies Definition 1
\(\ds \leadsto \ \ \) \(\ds x = \sinh y\) \(\iff\) \(\ds y = \map \ln {x + \sqrt {x^2 + 1} }\)

$\blacksquare$


Also see