Equivalence of Definitions of Semiring of Sets/Definition 2 implies Definition 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\SS$ be a system of sets satisfying the semiring of sets axioms:

\((1)\)   $:$   \(\ds \O \in \SS \)      
\((2)\)   $:$   $\cap$-stable      \(\ds \forall A, B \in \SS:\) \(\ds A \cap B \in \SS \)      
\((3')\)   $:$     \(\ds \forall A, B \in \SS:\) $\exists n \in \N$ and pairwise disjoint sets $A_1, A_2, A_3, \ldots, A_n \in \SS : \ds A \setminus B = \bigcup_{k \mathop = 1}^n A_k$      


Then $\SS$ satisfies the semiring of sets axioms:

\((1)\)   $:$   \(\ds \O \in \SS \)      
\((2)\)   $:$   $\cap$-stable      \(\ds \forall A, B \in \SS:\) \(\ds A \cap B \in \SS \)      
\((3)\)   $:$     \(\ds \forall A, A_1 \in \SS : A_1 \subseteq A:\) $\exists n \in \N$ and pairwise disjoint sets $A_2, A_3, \ldots, A_n \in \SS : \ds A = \bigcup_{k \mathop = 1}^n A_k$      


Proof

Let $\SS$ be a system of sets satisfying the axioms:

\((1)\)   $:$   \(\ds \O \in \SS \)      
\((2)\)   $:$   $\cap$-stable      \(\ds \forall A, B \in \SS:\) \(\ds A \cap B \in \SS \)      
\((3')\)   $:$     \(\ds \forall A, B \in \SS:\) $\exists n \in \N$ and pairwise disjoint sets $A_1, A_2, A_3, \ldots, A_n \in \SS : \ds A \setminus B = \bigcup_{k \mathop = 1}^n A_k$      


It remains to be shown that $\SS$ satisfies the axiom

\((3)\)   $:$     \(\ds \forall A, A_1 \in \SS : A_1 \subseteq A:\) $\exists n \in \N$ and pairwise disjoint sets $A_2, A_3, \ldots, A_n \in \SS : \ds A = \bigcup_{k \mathop = 1}^n A_k$      


Let $A, B \in \SS : B \subseteq A$.

By axiom $(3)$:

$\exists$ a finite sequence of pairwise disjoint sets $A_1, A_2, \ldots, A_n \in \SS : \ds A \setminus B = \bigcup_{k \mathop = 1}^n A_k$.

Then $B$ is disjoint with each of the sets $A_k$.

Then:

\(\ds B \cup \bigcup_{k \mathop = 1}^n A_k\) \(=\) \(\ds \paren {A \setminus B} \cup B\)
\(\ds \) \(=\) \(\ds A \cup B\) Set Difference Union Second Set is Union
\(\ds \) \(=\) \(\ds A\) Union with Superset is Superset

As $A$ and $B$ were arbitrary, then $\SS$ satisfies axiom $(3)$

The result follows

$\blacksquare$