Euclid's Lemma for Unique Factorization Domain/General Result

From ProofWiki
Jump to navigation Jump to search

Lemma

Let $\struct {D, +, \times}$ be a unique factorization domain.

Let $p$ be an irreducible element of $D$.

Let $n \in D$ such that:

$\displaystyle n = \prod_{i \mathop = 1}^r a_i$

where $a_i \in D$ for all $i: 1 \le i \le r$.


Then if $p$ divides $n$, it follows that $p$ divides $a_i$ for some $i$.


That is:

$p \divides a_1 a_2 \ldots a_n \implies p \divides a_1 \lor p \divides a_2 \lor \cdots \lor p \divides a_n$


Proof

Identical to the proof of Euclid's Lemma for Irreducible Elements: General Result.

$\blacksquare$


Source of Name

This entry was named for Euclid.