# Euclid:Proposition/X/14

Jump to navigation
Jump to search

## Proposition

In the words of Euclid:

*If two straight lines be proportional, and the square on the first be greater than the square on the second by the square on a straight line commensurable with the first, the square on the third will also be greater than the square on the fourth by the square on a straight line commensurable with the third.*

And, if the square on the first be greater than the square on the second by the square on a straight line incommensurable with the first, the square on the third will also be greater than the square on the fourth by the square on a straight line incommensurable with the third.

(*The Elements*: Book $\text{X}$: Proposition $14$)

## Sources

- 1926: Sir Thomas L. Heath:
*Euclid: The Thirteen Books of The Elements: Volume 3*(2nd ed.) ... (previous) ... (next): Book $\text{X}$. Propositions