Euclidean Plane is Abstract Geometry
Jump to navigation
Jump to search
Contents
Theorem
The Euclidean plane $\left({\R^2, L_E}\right)$ is an abstract geometry.
Proof
We will show that the axioms for an abstract geometry hold.
Axiom 1
Let $P = \left({x_1, y_1}\right)$ and $Q = \left({x_2, y_2}\right)$ be two distinct points in $\left({\R^2, L_E}\right)$.
If $x_1 = x_2 = a$ then $P, Q \in L_a$.
If $x_1 \ne x_2$ then let:
- $m = \dfrac {y_2 - y_1} {x_2 - x_1}$
- $b = y_2 - m x_2$
Then $P, Q \in L_{m,b}$, since:
- $b + m x_1 = y_2 - m \left({x_2 - x_1}\right) = y_2 - \left({y_2 - y_1}\right) = y_1$
- $b + m x_2 = y_2 - m \left({x_2 - x_2}\right) = y_2$
So any two points in $\R^2$ lie on a line in $L_E$.
$\Box$
Axiom 2
For any $a \in \R$:
- $\left({a, 0}\right), \left({a, 1}\right) \in L_a$
Also for any $m, b \in \R$:
- $\left({0, b}\right),\left({1, m + b}\right) \in L_{m,b}$
So every line in $L_E$ has at least two distinct points.
$\Box$
Hence $\left({\R^2, L_E}\right)$ is an abstract geometry.
$\blacksquare$
Sources
- 1991: Richard S. Millman and George D. Parker: Geometry: A Metric Approach with Models (2nd ed.) ... (previous) ... (next): $\S 2.1$