Euler's Equation/Independent of x
Jump to navigation
Jump to search
Theorem
Let $y$ be a mapping.
Let $J$ be a functional such that:
- $\ds J \sqbrk y = \int_a^b \map F {y, y'} \rd x$
Then the corresponding Euler's Equation can be reduced to:
- $F - y' F_{y'} = C$
where $C$ is an arbitrary constant.
Proof
Assume that:
- $\ds J \sqbrk y = \int_a^b \map F {y, y'} \rd x$
Then:
\(\ds \delta J\) | \(=\) | \(\ds 0\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds F_y - \dfrac \d {\d x} F_{y'}\) | \(=\) | \(\ds F_y - \paren {\dfrac {\d y} {\d x} \dfrac {\partial F_{y'} } {\partial y} + \dfrac {\d y'} {\d x} \dfrac {\partial F_{y'} } {\partial y'} }\) | |||||||||||
\(\ds \) | \(=\) | \(\ds F_y - y' F_{y'y} - y'' F_{y'y'}\) |
Multiply this differential equation by $y'$.
This gives:
\(\ds F_y y' - {y'}^2 F_{y'y} - y'y'' F_{y'y'}\) | \(=\) | \(\ds \paren {F_{y} y' + F_{y'} y''} - F_{y'} y'' - y' \paren {y' F_{y'y} + y'' F_{y'y'} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\d F} {\d x} - y' \paren {\dfrac {\d y} {\d x} \dfrac {\partial F_{y'} } {\partial y} + \dfrac {\d y'} {\d x} \dfrac {\partial F_{y'} } {\partial y'} } - F_{y'} y''\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\d F} {\d x} - y' \dfrac {\d F} {\d x} - \dfrac {\d y'} {\d x} F_{y'}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac \d {\d x} \paren {F - y' F_{y'} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 0\) |
Integration yields the desired result.
$\blacksquare$
Sources
- 1963: I.M. Gelfand and S.V. Fomin: Calculus of Variations ... (previous) ... (next): $\S 1.4$: The Simplest Variational Problem. Euler's Equation