Euler's Number: Limit of Sequence implies Base of Logarithm

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $e$ be Euler's number defined by:

$\ds e := \lim_{n \mathop \to \infty} \paren {1 + \frac 1 n}^n$

Then $e$ is the unique solution to the equation $\map \ln x = 1$.

That is:

$\map \ln x = 1 \iff x = e$


Proof

First we prove that $e$ is a solution to $\map \ln x = 1$:

\(\ds \map \ln e\) \(=\) \(\ds \map \ln {\lim_{n \mathop \to \infty} \paren {1 + \frac 1 n}^n }\) Definition of Euler's Number as Limit of Sequence
\(\ds \) \(=\) \(\ds \lim_{n \mathop \to \infty} \paren {\map \ln {1 + \frac 1 n}^n }\) Definition of Limit of Real Function
\(\ds \) \(=\) \(\ds \lim_{n \mathop \to \infty} \dfrac {n \map \ln {\dfrac {n + 1} n } } 1\) Logarithm of Power
\(\ds \) \(=\) \(\ds \lim_{n \mathop \to \infty} \frac {\map \ln {\dfrac {n + 1} n} } {\paren {\dfrac 1 n} }\) multiplying numerator and denominator by $\dfrac 1 n$
\(\ds \) \(=\) \(\ds \lim_{n \mathop \to \infty} \frac{\paren {-\dfrac 1 {n^2} } \paren {\dfrac n {n + 1} } } {\paren {-\dfrac 1 {n^2} } }\) L'Hôpital's Rule
\(\ds \) \(=\) \(\ds \lim_{n \mathop \to \infty} \paren {\frac n {n + 1} }\)
\(\ds \) \(=\) \(\ds 1\)


From Logarithm is Strictly Increasing, $\ln$ is strictly monotone.

By Strictly Monotone Mapping with Totally Ordered Domain is Injective it follows that $\ln$ is an injection.

So the solution to $\map \ln x = 1$ is unique.

Hence the result.

$\blacksquare$