# Euler Form of Gamma Function at Positive Integers

## Theorem

$\ds \map \Gamma z := \lim_{m \mathop \to \infty} \frac {m^z m!} {z \paren {z + 1} \paren {z + 2} \cdots \paren {z + m} }$

converges to the factorial function at positive integers:

$\ds \lim_{m \mathop \to \infty} \frac {m^n m!} {\paren {n + 1} \paren {n + 2} \cdots \paren {n + m} } = n!$

## Proof

 $\ds \lim_{m \mathop \to \infty} \frac {m^n m!} {\paren {n + 1} \paren {n + 2} \cdots \paren {n + m} }$ $=$ $\ds \lim_{m \mathop \to \infty} \frac {m^n m!} {\frac {\paren {n + m}!} {n!} }$ $\ds$ $=$ $\ds n! \lim_{m \mathop \to \infty} \frac {m^n} {\paren {m + 1} \paren {m + 2} \cdots \paren {m + n} }$ $\ds$ $=$ $\ds n!$

Now we have from Factorial of Integer plus Reciprocal of Integer that:

$\ds \lim_{m \mathop \to \infty} \dfrac {\paren {m + n}!} {m! m^n} = 1$

Now:

 $\ds \dfrac {n! \paren {n + 1} \paren {n + 2} \cdots \paren {n + m} } {m! m^n}$ $=$ $\ds \dfrac {\paren {m + n}!} {m! m^n}$ $\ds \leadsto \ \$ $\ds \lim_{m \mathop \to \infty} \dfrac {n! \paren {n + 1} \paren {n + 2} \cdots \paren {n + m} } {m! m^n}$ $=$ $\ds 1$ $\ds \leadsto \ \$ $\ds \lim_{m \mathop \to \infty} \dfrac {m! m^n} {\paren {n + 1} \paren {n + 2} \cdots \paren {n + m} }$ $=$ $\ds n!$

$\blacksquare$