Euler Phi Function of Product with Prime

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $p$ be prime and $n \in \Z: n \ge 1$.

Then:

$\map \phi {p n} = \begin{cases}

\paren {p - 1} \map \phi n & : p \nmid n \\ p \map \phi n & : p \divides n \end{cases}$ where:

$\map \phi n$ denotes the Euler $\phi$ function of $n$
$\divides$ denotes divisibility.


Thus for all $n \ge 1$ and for any prime $p$, we have that $\map \phi n$ divides $\map \phi {p n}$.


Proof

First suppose that $p \nmid n$.

Then by Prime not Divisor implies Coprime, $p \perp n$.

So by Euler Phi Function is Multiplicative, $\map \phi {p n} = \map \phi p \map \phi n$.

It follows from Euler Phi Function of Prime that $\map \phi {p n} = \paren {p - 1} \map \phi n$.


Now suppose that $p \divides n$.

Then $n = p^k m$ for some $k, m \in \Z: k, m \ge 1$ such that $p \perp m$.

Then:

\(\ds \map \phi {p n}\) \(=\) \(\ds \map \phi {p^{k + 1} m}\)
\(\ds \) \(=\) \(\ds \map \phi {p^{k + 1} } \map \phi m\) Euler Phi Function is Multiplicative
\(\ds \) \(=\) \(\ds p^{k + 1} \paren {1 - \frac 1 p} \map \phi m\) Euler Phi Function of Prime Power


At the same time:

\(\ds p \map \phi n\) \(=\) \(\ds p \map \phi {p^k m}\)
\(\ds \) \(=\) \(\ds p \map \phi {p^k} \map \phi m\) Euler Phi Function is Multiplicative
\(\ds \) \(=\) \(\ds p p^k \paren {1 - \frac 1 p} \map \phi m\) Euler Phi Function of Prime Power
\(\ds \) \(=\) \(\ds p^{k + 1} \paren {1 - \frac 1 p} \map \phi m\)

$\blacksquare$