# Every Set in Von Neumann Universe

Jump to navigation
Jump to search

## Theorem

Let $S$ be a small class.

Then $S$ is well-founded.

## Proof

*This page is beyond the scope of ZFC, and should not be used in anything other than the theory in which it resides.*

*If you see any proofs that link to this page, please insert this template at the top.*

*If you believe that the contents of this page can be reworked to allow ZFC, then you can discuss it at the talk page.*

The proof shall proceed by Epsilon Induction on $S$.

Suppose that all the elements $a \in S$ are well-founded.

That is, $a \in V \left({x}\right)$ for some $x$.

Let:

- $\displaystyle F \left({a}\right) = \bigcap \left\{{x \in \operatorname{On} : a \in V \left({x}\right)}\right\}$

Take $\displaystyle \bigcup_{a \mathop \in S} F \left({a}\right)$.

Take any $a \in S$.

\(\displaystyle a\) | \(\in\) | \(\displaystyle V \left({F \left({a}\right)}\right)\) | Definition of $F$ | ||||||||||

\(\displaystyle \implies \ \ \) | \(\displaystyle a\) | \(\in\) | \(\displaystyle V \left({\bigcup_{x \mathop \in S} F \left({x}\right) }\right)\) | Set is Subset of Union: Family of Sets and Von Neumann Hierarchy Comparison | |||||||||

\(\displaystyle \implies \ \ \) | \(\displaystyle S\) | \(\subseteq\) | \(\displaystyle V \left({\bigcup_{x \mathop \in S} F \left({x}\right) }\right)\) | Definition of Subset | |||||||||

\(\displaystyle \implies \ \ \) | \(\displaystyle S\) | \(\in\) | \(\displaystyle \mathcal P \left({ V\left({ \bigcup_{x \mathop \in S} F\left({x}\right) }\right) }\right)\) | Definition of Power Set |

Therefore:

- $\displaystyle S \in V \left({ \bigcup_{x \mathop \in S} F \left({x}\right) + 1}\right)$

and $S \in V \left({x}\right)$ for some ordinal $x$.

$\blacksquare$

## Sources

- 1971: Gaisi Takeuti and Wilson M. Zaring:
*Introduction to Axiomatic Set Theory*: $\S 9.13$