# Every Set in Von Neumann Universe It has been suggested that this page or section be merged into Set has Rank. (Discuss)

## Theorem

Let $S$ be a small class.

Then $S$ is well-founded.

## Proof

This page is beyond the scope of ZFC, and should not be used in anything other than the theory in which it resides.

If you believe that the contents of this page can be reworked to allow ZFC, then you can discuss it at the talk page.

The proof shall proceed by Epsilon Induction on $S$.

Suppose that all the elements $a \in S$ are well-founded.

That is, $a \in V \left({x}\right)$ for some $x$.

Let:

$\displaystyle F \left({a}\right) = \bigcap \left\{{x \in \operatorname{On} : a \in V \left({x}\right)}\right\}$

Take $\displaystyle \bigcup_{a \mathop \in S} F \left({a}\right)$.

Take any $a \in S$.

 $\displaystyle a$ $\in$ $\displaystyle V \left({F \left({a}\right)}\right)$ Definition of $F$ $\displaystyle \implies \ \$ $\displaystyle a$ $\in$ $\displaystyle V \left({\bigcup_{x \mathop \in S} F \left({x}\right) }\right)$ Set is Subset of Union: Family of Sets and Von Neumann Hierarchy Comparison $\displaystyle \implies \ \$ $\displaystyle S$ $\subseteq$ $\displaystyle V \left({\bigcup_{x \mathop \in S} F \left({x}\right) }\right)$ Definition of Subset $\displaystyle \implies \ \$ $\displaystyle S$ $\in$ $\displaystyle \mathcal P \left({ V\left({ \bigcup_{x \mathop \in S} F\left({x}\right) }\right) }\right)$ Definition of Power Set

Therefore:

$\displaystyle S \in V \left({ \bigcup_{x \mathop \in S} F \left({x}\right) + 1}\right)$

and $S \in V \left({x}\right)$ for some ordinal $x$.

$\blacksquare$