Exchange of Order of Summation/Finite and Infinite Series

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $R: \Z \to \set {\T, \F}$ and $S: \Z \to \set {\T, \F}$ be propositional functions on the set of integers.

Let $\ds \sum_{\map R i} x_i$ denote a summation over $R$.


Let the fiber of truth of $R$ be infinite.

Let the fiber of truth of $S$ be finite.


For all $j$ in the fiber of truth of $S$, let $\ds \sum_{\map R i} a_{i j}$ be convergent.


Then:

$\ds \sum_{\map R i} \sum_{\map S j} a_{i j} = \sum_{\map S j} \sum_{\map R i} a_{i j}$


Proof




Sources