Exchange of Order of Summation with Dependency on Both Indices/Example

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $n \in \Z$ be an integer.

Let $R: \Z \to \set {\T, \F}$ be the propositional function on the set of integers defining:

$\forall i \in \Z: \map R 1 := \paren {n = k i \text { for some } k \in \Z}$


Let $S: \Z \times \Z \to \set {\T, \F}$ be a propositional function on the Cartesian product of the set of integers with itself defining:

$\forall i, j \in \Z: \map S {i, j} := \paren {1 \le j < i}$


Consider the summation:

$\ds \sum_{\map R i} \sum_{\map S {i, j} } a_{i j}$


Then:

$\ds \sum_{\map R i} \sum_{\map S {i, j} } a_{i j} = \sum_{\map {S'} j} \sum_{\map {R'} {i, j} } a_{i j}$

where:

$\map {S'} j$ denotes the propositional function:
$\forall j \in \Z: \map {S'} j := \paren {1 < j \le n}$
$\map {R'} {i, j}$ denotes the propositional function:
$\forall i, j \in \Z: \map {R'} {i, j} := \paren {n = k i \text { for some } k \in \Z \text { and } i > j}$


Proof

From Exchange of Order of Summation with Dependency on Both Indices:

$\map {S'} j$ denotes the propositional function:
there exists an $i$ such that both $\map R i$ and $\map S {i, j}$ hold
$\map {R'} {i, j}$ denotes the propositional function:
both $\map R i$ and $\map S {i, j}$ hold.


The definition of $\map {R'} {i, j}$ follows immediately:

$\map R i := \paren {n = k i \text { for some } k \in \Z}$

and:

$\map S {i, j} := \paren {1 \le j < i}$


Then:

\(\ds \map {S'} j\) \(=\) \(\ds \paren {\exists i \in \Z: n = k i}\)
\(\ds \) \(\) \(\, \ds \land \, \) \(\ds \paren {1 \le j < i}\)

By Absolute Value of Integer is not less than Divisors, it follows from $\map R i$ that $i \le n$.

That is, for $\map {S'} j$ to hold, $i \le n$.

But for all $j \in \Z$ such that $1 \le j < n$ it follows that $i = n$ fulfils the condition that $n = k i$.

Hence:

$\map {S'} j := \paren {1 < j \le n}$

$\blacksquare$


Sources