Existence and Uniqueness of Direct Limit of Sequence of Groups/Lemma 1
Jump to navigation
Jump to search
![]() | This article needs to be linked to other articles. You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by adding these links. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{MissingLinks}} from the code. |
Lemma
On $\widehat G_\infty := \ds \coprod_{n \mathop \in \N} G_n$ the relation:
- $\tuple {x_n, n} \sim \tuple {y_m, m} \iff \exists k \ge n, m: \map {g_{n, k} } {x_n} = \map {g_{m, k} } {y_m}$
is an equivalence relation.
Proof
Reflexivity
Since $g_{n, n} = \mathop {Id}_{G_n}$ we have:
- $\forall \tuple {x_n, n} \in \widehat G_\infty: \map {g_{n, n} } {x_n} = \map {g_{n, n} } {x_n}$
Hence:
- $\tuple {x_n, n} \sim \tuple {x_n, n}$
$\Box$
Symmetry
Let $\tuple {x_n, n} \sim \tuple {y_m, m}$.
Then there exists a $k \ge n, m$ such that:
- $\map {g_{n, k} } {x_n} = \map {g_{m, k} } {x_m}$
Hence also:
- $\map {g_{m, k} } {x_m} = \map {g_{n, k} } {x_n}$
That is:
- $\tuple {y_m, m} \sim \tuple {x_n, n}$
$\Box$
Transitivity
Let $\tuple {x_n, n} \sim \tuple {y_m, m}$ and $\tuple {y_m, m} \sim \tuple {z_r, r}$.
Then there exist $k \ge m, n$ and $l \ge n, r$ such that:
- $\map {g_{n, k} } {x_n} = \map {g_{m, k} } {y_m}$
- $\map {g_{m, l} } {y_m} = \map {g_{r, l} } {z_r}$
Let $q:= \max \set {k, l}$.
Then we have:
\(\ds \map {g_{n, q} } {x_n}\) | \(=\) | \(\ds \map {g_{k, q} } {\map {g_{m, k} } {y_m} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map {g_{m, q} } {y_m}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map {g_{l,q} } {\map {g_{m, l} } {y_m} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map {g_{l, q} } {\map {g_{r, l} } {z_r} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \map {g_{r,q} } {z_r}\) |
that is:
- $\tuple {x_n, n} \sim \tuple {z_r, r}$
$\blacksquare$