Existence of Chebyshev Polynomials of the First Kind

From ProofWiki
Jump to navigation Jump to search

Theorem

There exists a Chebyshev polynomial of the first kind for all natural numbers $n$.


Proof



For $n = 0$:

\(\ds \map \cos {0 \theta}\) \(=\) \(\ds \map \cos 0\)
\(\ds \) \(=\) \(\ds 1\)
$\map {T_0} x = 1$, $T_0 \in \Bbb P$




For $n = 1$:

\(\ds \map \cos {1 \theta}\) \(=\) \(\ds \map \cos \theta\)
$\map {T_1} x = x$, $T_1 \in \Bbb P$


Assume $\map {T_n} {\cos \theta} = \map \cos {n \theta}$.

\(\ds \map {T_{n+1} } {\cos \theta}\) \(=\) \(\ds \map \cos { \paren {n+1} \theta}\)
\(\ds \) \(=\) \(\ds \map \cos { n \theta + \theta}\)
\(\ds \) \(=\) \(\ds \map \cos { n \theta} \map \cos \theta - \map \sin { n \theta} \map \sin \theta\) Cosine of Sum
\(\ds \) \(=\) \(\ds 2 \map \cos { n \theta} \map \cos \theta - \map \cos { n \theta} \map \cos \theta - \map \sin { n \theta} \map \sin \theta\)
\(\ds \) \(=\) \(\ds 2 \map \cos { n \theta} \map \cos \theta - \paren { \map \cos { n \theta} \map \cos \theta + \map \sin { n \theta} \map \sin \theta }\)
\(\ds \) \(=\) \(\ds 2 \map \cos { n \theta} \map \cos \theta - \map \cos { n \theta - \theta }\) Cosine of Difference
\(\ds \) \(=\) \(\ds 2 \map \cos \theta \map \cos { n \theta} - \map \cos { \paren {n-1} \theta }\)
\(\ds \) \(=\) \(\ds 2 \map \cos \theta \map {T_n} {\cos \theta} - \map {T_{n-1} } {\cos \theta }\) by hypothesis
$\map {T_{n+1} } x = 2x \map {T_n} x - \map {T_{n - 1} } x$, $T_{n+1} \in \Bbb P$


By the Second Principle of Mathematical Induction, $T_n \in \Bbb P$ for all natural numbers $n$.

$\blacksquare$