Expectation of Logistic Distribution/Lemma 3

From ProofWiki
Jump to navigation Jump to search

Lemma for Expectation of Logistic Distribution

$\forall k \in \N$:
$\ds \int_{\to 0}^{\to 1} \map {\ln^{2k + 1} } {\dfrac {1 - u} u} \rd u = 0$


Proof

let:

\(\ds x\) \(=\) \(\ds \paren {\dfrac 1 2 - u}\) Integration by Substitution
\(\ds \leadsto \ \ \) \(\ds \frac {\d x} {\d u}\) \(=\) \(\ds -1\) Power Rule for Derivatives

Then:

\(\ds \int_{\to 0}^{\to 1} \map {\ln^{2k + 1} } {\dfrac {1 - u} u} \rd u\) \(=\) \(\ds -\int_{\to \frac 1 2}^{\to -\frac 1 2} \map {\ln^{2k + 1} } {\dfrac {1 - \paren {\dfrac 1 2 - x} } {\paren {\dfrac 1 2 - x} } } \rd x\)
\(\ds \) \(=\) \(\ds \int_{\to -\frac 1 2}^{\to \frac 1 2} \map {\ln^{2k + 1} } {\dfrac {\paren {\dfrac 1 2 + x} } {\paren {\dfrac 1 2 - x} } } \rd x\)
\(\ds \) \(=\) \(\ds 0\) Definite Integral of Odd Function

$\blacksquare$