# Exponential as Limit of Sequence

## Contents

## Theorem

Let $e$ be defined as in Euler's number as the number satisfied by $\ln e = 1$.

Let $\left \langle {x_n} \right \rangle$ be the sequence in $\R$ defined as:

- $x_n = \left({1 + \dfrac x n}\right)^n$

Then $\left \langle {x_n} \right \rangle$ converges to the limit $e^x$

### Corollary

- $\displaystyle \lim_{n \to \infty} \left({1 + \frac 1 n}\right)^n = e$

## Proof of Convergence

From Equivalence of Definitions of Exponential Function, we have:

- $\displaystyle \lim_{n \to \infty} \left({1 + \dfrac x n}\right)^n = \sum_{n \mathop = 0}^\infty \frac {x^n} {n!}$

the latter of which converges from Series of Power over Factorial Converges.

$\blacksquare$

## Proof of Convergence to $e^x$

This proof assumes the Laws of Logarithms.

We have:

\(\displaystyle \ln \left({\left({1 + \frac x n}\right)^n}\right)\) | \(=\) | \(\displaystyle n \ln \left({1 + xn^{-1} }\right)\) | $\quad$ Logarithms of Powers | $\quad$ | |||||||||

\(\displaystyle \) | \(=\) | \(\displaystyle x \frac {\ln \left({1 + x n^{-1} }\right)} {x n^{-1} }\) | $\quad$ multiplying by $1 = \dfrac { xn^{-1} }{ xn^{-1} }$ | $\quad$ |

From Limit of Sequence is Limit of Real Function, we can consider the differentiable analogue of the sequence.

From Derivative of Logarithm at One we have:

- $\displaystyle \lim_{x \to 0} \frac {\ln \left({1 + x}\right)} x = 1$

But $x n^{-1} \to 0$ as $n \to \infty$ from Power of Reciprocal.

Thus:

- $\displaystyle x \frac {\ln \left({1 + x n^{-1}}\right)} {x n^{-1}} \to x$

as $n \to \infty$.

From Exponential Function is Continuous:

- $\displaystyle \left({1 + \frac x n}\right)^n = \exp \left({n \ln \left({1 + \frac x n}\right)}\right) \to \exp x = e^x$

as $n \to \infty$.

$\blacksquare$

### Proof of Corollary

From Equivalence of Definitions of Euler's Number:

- $e = e^1$

The result follows by setting $x = 1$ in the main result.

$\blacksquare$

## Sources

- 1977: K.G. Binmore:
*Mathematical Analysis: A Straightforward Approach*... (previous) ... (next): $\S 14.7 \ (3)$