Exponential of Natural Logarithm
Jump to navigation
Jump to search
Theorem
Let $x \in \R$ be a real number.
Let $\exp x$ be the exponential of $x$.
Let $\ln x$ be the natural logarithm of $x$.
Then:
- $\forall x > 0: \exp \left({\ln x}\right) = x$
- $\forall x \in \R: \ln \left({\exp x}\right) = x$
Proof
From the definition of the exponential function:
- $e^y = x \iff \ln x = y$
Raising both sides of the equation $\ln x = y$ to the power of $e$:
\(\ds e^{\ln x}\) | \(=\) | \(\ds e^y\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds x\) |
$\blacksquare$