Exponential of Sum/Real Numbers/Proof 2
Jump to navigation
Jump to search
Theorem
Let $x, y \in \R$ be real numbers.
Let $\exp x$ be the exponential of $x$.
Then:
- $\map \exp {x + y} = \paren {\exp x} \paren {\exp y}$
Proof
Lemma
Let $x, y \in \R$.
Let $n \in \N_{> 0}$ such that $n > -\paren {x + y}$.
Then:
- $1 + \dfrac {x + y} n + \dfrac {x y} {n^2} = \paren {1 + \dfrac {x + y} n} \paren {1 + \dfrac {\paren {\frac {x y} {n + x + y} } } n}$
$\Box$
This proof assumes the definition of $\exp$ as defined by a limit of a sequence:
- $\exp x = \ds \lim_{n \mathop \to +\infty} \paren {1 + \frac x n}^n$
From Powers of Group Elements we can presuppose the Exponent Combination Laws for natural number indices.
First we introduce a lemma:
By definition:
\(\ds \paren {\exp x} \paren {\exp y}\) | \(=\) | \(\ds \lim_{n \mathop \to +\infty} \paren {1 + \frac x n}^n \lim_{n \mathop \to +\infty} \paren {1 + \frac y n}^n\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{n \mathop \to +\infty} \paren {\paren {1 + \frac x n} \paren {1 + \frac y n} }^n\) | Combination Theorem for Sequences | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{n \mathop \to +\infty} \paren {1 + \frac {x + y} n + \frac {x y} {n^2} }^n\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{n \mathop \to +\infty} \paren {\paren {1 + \frac {x + y} n} \paren {1 + \frac {\paren {\frac {x y} {n + x + y} } } n} }^n\) | Lemma: Without loss of generality let $n > - x - y$: therefore $n + x + y > 0$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{n \mathop \to +\infty} \paren {1 + \frac {x + y} n}^n \lim_{n \mathop \to +\infty} \paren {1 + \frac {\paren {\frac {x y} {n + x + y} } } n}^n\) | Combination Theorem for Sequences | |||||||||||
\(\ds \) | \(=\) | \(\ds \lim_{n \mathop \to +\infty} \paren {1 + \frac {x + y} n}^n\) | Null Sequence in Exponential Sequence | |||||||||||
\(\ds \) | \(=\) | \(\ds \map \exp {x + y}\) |
$\blacksquare$