Exradius of Triangle in Terms of Circumradius/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\triangle ABC$ be a triangle whose sides are $a$, $b$ and $c$ opposite vertices $A$, $B$ and $C$ respectively.

Let $\rho_a$ be the exradius of $\triangle ABC$ with respect to $a$.

Let $R$ be the circumradius of $\triangle ABC$.


Then:

$\rho_a = 4 R \sin \dfrac A 2 \cos \dfrac B 2 \cos \dfrac C 2$


Proof

Area-of-Triangle-by-Exradius.png

Let $r$ denote the inradius of $\triangle ABC$.

We have:

\(\ds r\) \(=\) \(\ds 4 R \sin \dfrac A 2 \sin \dfrac B 2 \sin \dfrac C 2\) Inradius in Terms of Circumradius
\(\ds \leadsto \ \ \) \(\ds \rho_a\) \(=\) \(\ds 4 R \sin \dfrac A 2 \map \sin {\dfrac {180 \degrees - B} 2} \map \sin {\dfrac {180 \degrees - C} 2}\)
\(\ds \) \(=\) \(\ds 4 R \sin \dfrac A 2 \map \sin {90 \degrees - \dfrac B 2} \map \sin {90 \degrees - \dfrac C 2}\)
\(\ds \) \(=\) \(\ds 4 R \sin \dfrac A 2 \cos \dfrac B 2 \cos \dfrac C 2\) Sine of Complement equals Cosine




$\blacksquare$


Sources