Extension Theorem for Total Orderings

From ProofWiki
Jump to navigation Jump to search

Theorem

Let the following conditions be fulfilled:

$(1):\quad$ Let $\struct {S, \circ, \preceq}$ be a totally ordered commutative semigroup
$(2):\quad$ Let all the elements of $\struct {S, \circ, \preceq}$ be cancellable
$(3):\quad$ Let $\struct {T, \circ}$ be an inverse completion of $\struct {S, \circ}$.


Then:

$(1):\quad$ The relation $\preceq'$ on $T$ satisfying $\forall x_1, x_2, y_1, y_2 \in S: x_1 \circ {y_1}^{-1} \preceq' x_2 \circ {y_2}^{-1} \iff x_1 \circ y_2 \preceq x_2 \circ y_1$ is a well-defined relation
$(2):\quad$ $\preceq'$ is the only total ordering on $T$ compatible with $\circ$
$(3):\quad$ $\preceq'$ is the only total ordering on $T$ that induces the given ordering $\preceq$ on $S$.


Proof

By Inverse Completion is Commutative Semigroup:

every element of $T$ is of the form $x \circ y^{-1}$ where $x, y \in S$.


Proof that Relation is Well-Defined

First we need to show that $\preceq'$ is well-defined.

So we need to show that if $x_1, x_2, y_1, y_2, z_1, z_2, w_1, w_2 \in S$ satisfy:

\(\ds x_1 \circ {y_1}^{-1}\) \(=\) \(\ds x_2 \circ {y_2}^{-1}\)
\(\ds z_1 \circ {w_1}^{-1}\) \(=\) \(\ds z_2 \circ {w_2}^{-1}\)
\(\ds x_1 \circ w_1\) \(\preceq\) \(\ds y_1 \circ z_1\)

then:

$x_2 \circ {w_2}^{-1} = y_2 \circ {z_2}^{-1}$


We have:

\(\ds x_1 \circ {y_1}^{-1}\) \(=\) \(\ds x_2 \circ {y_2}^{-1}\)
\(\ds \leadstoandfrom \ \ \) \(\ds x_1 \circ y_2\) \(=\) \(\ds x_2 \circ y_1\)

and:

\(\ds z_1 \circ {w_1}^{-1}\) \(=\) \(\ds z_2 \circ {w_2}^{-1}\)
\(\ds \leadstoandfrom \ \ \) \(\ds z_1 \circ w_2\) \(=\) \(\ds z_2 \circ w_1\)


So:

\(\ds x_2 \circ w_2 \circ y_1 \circ z_1\) \(=\) \(\ds x_1 \circ w_1 \circ y_2 \circ z_2\)
\(\ds \) \(\preceq\) \(\ds y_1 \circ z_1 \circ y_2 \circ z_2\)
\(\ds \leadsto \ \ \) \(\ds x_2 \circ w_2\) \(\preceq\) \(\ds y_2 \circ z_2\) Strict Ordering Preserved under Product with Cancellable Element


Thus $\preceq'$ is a well-defined relation on $T$.

$\Box$


Proof that Relation is Transitive

To show that $\preceq'$ is transitive:

\(\ds \forall x, y, z, w, u, v \in S: \, \) \(\ds x \circ y^{-1}\) \(\preceq'\) \(\ds z \circ w^{-1}\)
\(\ds z \circ w^{-1}\) \(\preceq'\) \(\ds u \circ v^{-1}\)
\(\ds \leadsto \ \ \) \(\ds x \circ w \circ v\) \(\preceq\) \(\ds y \circ z \circ v\)
\(\ds \) \(\preceq\) \(\ds y \circ w \circ u\)
\(\ds \leadsto \ \ \) \(\ds x \circ v\) \(\preceq\) \(\ds y \circ u\) Strict Ordering Preserved under Product with Cancellable Element
\(\ds \leadsto \ \ \) \(\ds x \circ y^{-1}\) \(\preceq'\) \(\ds u \circ v^{-1}\)


Thus $\preceq'$ is transitive.

$\Box$


Proof that Relation is Total Ordering

To show that $\preceq'$ is a total ordering on $T$ compatible with $\circ$:

Let $z_1, z_2 \in T$.

Then:

$\exists x_1, x_2, y_1, y_2 \in S: z_1 = x_1 \circ y_1^{-1}, z_2 = x_2 \circ y_2^{-1}$

Then:

$z_1 \circ y_1 = x_1$
$z_2 \circ y_2 = x_2$


As $\preceq$ is a total ordering on $S$, either:

$z_1 \circ y_1 \circ y_2 \preceq z_2 \circ y_2 \circ y_1$

or:

$z_2 \circ y_2 \circ y_1 \preceq z_1 \circ y_1 \circ y_2$


Without loss of generality, suppose that:

$z_1 \circ y_1 \circ y_2 \preceq z_2 \circ y_2 \circ y_1$

So:

\(\ds z_1 \circ y_1 \circ y_2\) \(\preceq\) \(\ds z_2 \circ y_2 \circ y_1\)
\(\ds \leadsto \ \ \) \(\ds x_1 \circ y_2\) \(\preceq\) \(\ds x_2 \circ y_1\)
\(\ds \leadsto \ \ \) \(\ds x_1 \circ y_1^{-1}\) \(\preceq'\) \(\ds x_2 \circ y_2^{-1}\)
\(\ds \leadsto \ \ \) \(\ds z_1\) \(\preceq'\) \(\ds z_2\)

and it is seen that $\preceq'$ is a total ordering on $T$.

$\Box$


Proof that Relation is Compatible with Operation

Let $x_1, x_2, y_1, y_2 \in T$ such that $x_1 \preceq' x_2, y_1 \preceq' y_2$.

We need to show that $x_1 \circ y_1 \preceq' x_2 \circ y_2$.

Let:

$x_1 = r_1 \circ s_1^{-1}, x_2 = r_2 \circ s_2^{-1}$
$y_1 = u_1 \circ v_1^{-1}, y_2 = u_2 \circ v_2^{-1}$

We have:

\(\ds x_1\) \(\preceq'\) \(\ds x_2\)
\(\ds \leadsto \ \ \) \(\ds r_1 \circ s_1^{-1}\) \(\preceq'\) \(\ds r_2 \circ s_2^{-1}\)
\(\ds \leadsto \ \ \) \(\ds r_1 \circ s_2\) \(\preceq\) \(\ds r_2 \circ s_1\)

and

\(\ds y_1\) \(\preceq'\) \(\ds y_2\)
\(\ds \leadsto \ \ \) \(\ds u_1 \circ v_1^{-1}\) \(\preceq'\) \(\ds u_2 \circ v_2^{-1}\)
\(\ds \leadsto \ \ \) \(\ds u_1 \circ v_2\) \(\preceq\) \(\ds u_2 \circ v_1\)


Because of the compatibility of $\preceq$ with $\circ$ on $S$:

\(\ds \paren {r_1 \circ s_2} \circ \paren {u_1 \circ v_2}\) \(\preceq\) \(\ds \paren {r_2 \circ s_1} \circ \paren {u_2 \circ v_1}\)
\(\ds \leadsto \ \ \) \(\ds \paren {r_1 \circ u_1} \circ \paren {s_2 \circ v_2}\) \(\preceq'\) \(\ds \paren {r_2 \circ u_2} \circ \paren {s_1 \circ v_1}\)
\(\ds \leadsto \ \ \) \(\ds \paren {r_1 \circ u_1} \circ \paren {s_1 \circ v_1}^{-1}\) \(\preceq'\) \(\ds \paren {r_2 \circ u_2} \circ \paren {s_2 \circ v_2}^{-1}\)
\(\ds \leadsto \ \ \) \(\ds \paren {r_1 \circ s_1^{-1} } \circ \paren {u_1 \circ v_1^{-1} }\) \(\preceq'\) \(\ds \paren {r_2 \circ s_2^{-1} } \circ \paren {u_2 \circ v_2^{-1} }\)
\(\ds \leadsto \ \ \) \(\ds x_1 \circ y_1\) \(\preceq'\) \(\ds x_2 \circ y_2\)

Thus compatibility is proved.

$\Box$


Proof about Restriction of Relation

To show that the restriction of $\preceq'$ to $S$ is $\preceq$:

\(\ds \forall x, y \in S: \, \) \(\ds x\) \(\preceq\) \(\ds y\)
\(\ds \leadsto \ \ \) \(\ds \forall a \in S: \, \) \(\ds \paren {x \circ a} \circ a\) \(\preceq\) \(\ds \paren {y \circ a} \circ a\)
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds \paren {x \circ a} \circ a^{-1}\)
\(\ds \) \(\preceq\) \(\ds \paren {y \circ a} \circ a^{-1}\)
\(\ds \) \(=\) \(\ds y\)


Conversely:

\(\ds \forall x, y \in S: \, \) \(\ds x\) \(\preceq'\) \(\ds y\)
\(\ds \leadsto \ \ \) \(\ds \exists u, v, z, w \in S: \, \) \(\ds x\) \(=\) \(\ds u \circ v^{-1}\)
\(\ds y\) \(=\) \(\ds z \circ w^{-1}\)
\(\ds u \circ w\) \(\preceq\) \(\ds z \circ v\)
\(\ds \leadsto \ \ \) \(\ds x \circ v \circ w\) \(=\) \(\ds u \circ w\)
\(\ds \) \(\preceq\) \(\ds z \circ v\)
\(\ds \) \(=\) \(\ds y \circ v \circ w\)
\(\ds \leadsto \ \ \) \(\ds x\) \(\preceq\) \(\ds y\) Strict Ordering Preserved under Product with Cancellable Element

$\Box$


Proof that Relation is Unique

To show that $\preceq'$ is unique:

Let $\preceq^*$ be any ordering on $T$ compatible with $\circ$ that induces $\preceq$ on $S$.

Then:

\(\ds \forall x, y, z, w \in S: \, \) \(\ds x \circ y^{-1}\) \(\preceq^*\) \(\ds z \circ w^{-1}\)
\(\ds \leadstoandfrom \ \ \) \(\ds x \circ w\) \(\preceq\) \(\ds y \circ z\)

Then:

\(\ds x \circ y^{-1}\) \(\preceq^*\) \(\ds z \circ w^{-1}\)
\(\ds \leadsto \ \ \) \(\ds x \circ w\) \(=\) \(\ds \paren {x \circ y^{-1} } \circ \paren {y \circ w}\)
\(\ds \) \(\preceq\) \(\ds \paren {z \circ w^{-1} } \circ \paren {y \circ w}\)
\(\ds \) \(=\) \(\ds y \circ z\)


\(\ds x \circ w\) \(\preceq\) \(\ds y \circ z\)
\(\ds \leadsto \ \ \) \(\ds x \circ y^{-1}\) \(=\) \(\ds \paren {x \circ w} \circ w^{-1} \circ y^{-1}\)
\(\ds \) \(\preceq^*\) \(\ds \paren {y \circ z} \circ w^{-1} \circ y^{-1}\)
\(\ds \) \(=\) \(\ds z \circ w^{-1}\)


So:

\(\ds \forall x, y, z, w \in S: \, \) \(\ds x \circ y^{-1}\) \(\preceq^*\) \(\ds z \circ w^{-1}\)
\(\ds \leadstoandfrom \ \ \) \(\ds x \circ w\) \(\preceq\) \(\ds y \circ z\)

Hence as every element of $T$ is of the form $x \circ y^{-1}$ where $x, y \in S$, the orderings $\preceq^*$ and $\preceq'$ are identical.

$\blacksquare$


Sources