# Factorial as Sum of Series of Subfactorial by Falling Factorial over Factorial/Condition for Convergence

Jump to navigation
Jump to search

## Theorem

Consider the series:

\(\displaystyle n!\) | \(=\) | \(\displaystyle \sum_{k \mathop \ge 0} \dfrac { {!k} \, n^{\underline k} } {k!}\) | |||||||||||

\(\displaystyle \) | \(=\) | \(\displaystyle \dfrac { !0 \times n^{\underline 0} } {0!} + \dfrac { {!1} \times n^{\underline 1} } {1!} + \dfrac { {!2} \times n^{\underline 2} } {2!} + \dfrac { {!3} \times n^{\underline 3} } {3!} + \cdots\) | |||||||||||

\(\displaystyle \) | \(=\) | \(\displaystyle 1 + \left({1 - \dfrac 1 {1 !} }\right) n + \left({1 - \dfrac 1 {1 !} + \dfrac 1 {2 !} }\right) n \left({n - 1}\right) + \left({1 - \dfrac 1 {1 !} + \dfrac 1 {2 !} - \dfrac 1 {3 !} }\right) n \left({n - 1}\right) \left({n - 2}\right) + \cdots\) |

This converges only when $n \in \Z_{\ge 0}$, that is, when $n$ is a non-negative integer.

## Proof

Consider the coefficients:

- $1, \left({1 - \dfrac 1 {1!} }\right), \left({1 - \dfrac 1 {1!} + \dfrac 1 {2!} }\right), \ldots$

By Power Series Expansion for Exponential Function, they converge to $\dfrac 1 e$.

Thus none of the terms ever reaches $0$ except when there is a factor of $\left({n - n}\right)$.

In this case, all subsequent terms of the expansion equal $0$ and indeed, the sequence converges.

$\blacksquare$

## Sources

- 1997: Donald E. Knuth:
*The Art of Computer Programming: Volume 1: Fundamental Algorithms*(3rd ed.) ... (previous) ... (next): $\S 1.2.5$: Permutations and Factorials: Exercise $16$