Factorial of Half/Proof 2
Jump to navigation
Jump to search
Theorem
- $\left({\dfrac 1 2}\right)! = \dfrac {\sqrt \pi} 2$
Proof
From Infinite Product of Product of Sequence of n plus alpha over Sequence of n plus beta:
- $\displaystyle \prod_{n \mathop \ge 1} \dfrac {\left({n + \alpha_1}\right) \cdots \left({n + \alpha_k}\right)} {\left({n + \beta_1}\right) \cdots \left({n + \beta_k}\right)} = \dfrac {\Gamma \left({1 + \beta_1}\right) \cdots\Gamma \left({1 + \beta_1}\right)} {\Gamma \left({1 + \alpha_1}\right) \cdots\Gamma \left({1 + \alpha_k}\right)}$
where:
- $\alpha_1 + \cdots + \alpha_k = \beta_1 + \cdots + \beta_k$
- none of the $\beta$s is a negative integer.
Setting:
- $k = 2$
- $\alpha_1 = \alpha_2 = 0$
- $\beta_1 = -\dfrac 1 2, \beta_2 = \dfrac 1 2$
we see that:
- $\alpha_1 + \alpha_2 = \beta_1 + \beta_2$
So this reduces to:
\(\ds \prod_{n \mathop \ge 1} \dfrac n {n - \frac 1 2} \dfrac n {n + \frac 1 2}\) | \(=\) | \(\ds \dfrac {\Gamma \left({1 - \frac 1 2}\right) \Gamma \left({1 + \frac 1 2}\right)} {\Gamma \left({1}\right) \Gamma \left({1}\right)}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \Gamma \left({\frac 1 2}\right) \Gamma \left({1 + \frac 1 2}\right)\) | as $\Gamma \left({1}\right) = 0! = 1$ | |||||||||||
\(\ds \) | \(=\) | \(\ds 2 \Gamma \left({1 + \frac 1 2}\right)^2\) | Gamma Difference Equation |
We then note that by Wallis's Product:
- $\displaystyle \prod_{n \mathop \ge 1} \dfrac n {n - \frac 1 2} \dfrac n {n + \frac 1 2} = \frac \pi 2$
Thus:
\(\ds \frac \pi 2\) | \(=\) | \(\ds 2 \Gamma \left({1 + \frac 1 2}\right)^2\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \frac \pi 4\) | \(=\) | \(\ds \left({\left({\frac 1 2}\right)!}\right)^2\) | Gamma Function Extends Factorial | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \left({\frac 1 2}\right)!\) | \(=\) | \(\ds \frac {\sqrt \pi} 2\) |
$\blacksquare$
Sources
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.5$: Permutations and Factorials: Exercise $18$