Fermat Number whose Index is Sum of Integers

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $F_n = 2^{\left({2^n}\right)} + 1$ be the $n$th Fermat number.

Let $k \in \Z_{>0}$.


Then:

$F_{n + k} - 1 = \left({F_n - 1}\right)^{2^k}$


Proof

By the definition of Fermat number

\(\ds F_{n + k} - 1\) \(=\) \(\ds 2^{2^{n + k} }\) Definition of Fermat Number
\(\ds \) \(=\) \(\ds 2^{2^n 2^k}\)
\(\ds \) \(=\) \(\ds \left({2^{2^n} }\right)^{2^k}\)
\(\ds \) \(=\) \(\ds \left({F_n - 1}\right)^{2^k}\) Definition of Fermat Number

$\blacksquare$


Sources