# Fibonacci Number by Power of 2/Proof 1

## Contents

## Theorem

\(\displaystyle \forall n \in \Z_{\ge 0}: \ \ \) | \(\displaystyle 2^{n - 1} F_n\) | \(=\) | \(\displaystyle \sum_k 5^k \dbinom n {2 k + 1}\) | ||||||||||

\(\displaystyle \) | \(=\) | \(\displaystyle \dbinom n 1 + 5 \dbinom n 3 + 5^2 \dbinom n 5 + \cdots\) |

where:

- $F_n$ denotes the $n$th Fibonacci number
- $\dbinom n {2 k + 1} \ $ denotes a binomial coefficient.

## Proof

The proof proceeds by induction.

For all $n \in \Z_{\ge 0}$, let $P \left({n}\right)$ be the proposition:

- $\displaystyle 2^{n - 1} F_n = \sum_k 5^k \dbinom n {2 k + 1}$

First note the bounds of the summation.

By definition, $\dbinom n k = 0$ where $k < 0$ or $k > n$.

Thus in all cases in the following, terms outside the range $0 \le k \le n$ can be discarded.

$P \left({0}\right)$ is the case:

\(\displaystyle 2^{-1} F_0\) | \(=\) | \(\displaystyle 0\) | Definition of Fibonacci Numbers: $F_0 = 0$ | ||||||||||

\(\, \displaystyle \forall k \in \Z: \, \) | \(\displaystyle \) | \(=\) | \(\displaystyle 5^k \dbinom 0 {2 k + 1}\) | Zero Choose n |

Thus $P \left({0}\right)$ is seen to hold.

### Basis for the Induction

$P \left({1}\right)$ is the case:

\(\displaystyle 2^0 F_1\) | \(=\) | \(\displaystyle 1\) | Definition of Fibonacci Numbers: $F_1 = 1$ | ||||||||||

\(\displaystyle \) | \(=\) | \(\displaystyle 5^0 \dbinom 1 {2 \times 0 + 1}\) | One Choose n |

Thus $P \left({1}\right)$ is seen to hold.

This is the basis for the induction.

### Induction Hypothesis

Now it needs to be shown that, if $P \left({r}\right)$ is true, where $r \ge 1$, then it logically follows that $P \left({r + 1}\right)$ is true.

So this is the induction hypothesis:

- $\displaystyle 2^{r - 1} F_r = \sum_k 5^k \dbinom r {2 k + 1}$

from which it is to be shown that:

- $\displaystyle 2^r F_{r + 1} = \sum_k 5^k \dbinom {r + 1} {2 k + 1}$

### Induction Step

This is the induction step:

\(\displaystyle 2^r F_{r + 1}\) | \(=\) | \(\displaystyle 2^r \left({F_{r - 1} + F_r}\right)\) | Definition of Fibonacci Numbers | ||||||||||

\(\displaystyle \) | \(=\) | \(\displaystyle 4 \times 2^{r - 2} F_{r - 1} + 2 \times 2^{r - 1} F_r\) | |||||||||||

\(\displaystyle \) | \(=\) | \(\displaystyle 4 \times \sum_k 5^k \dbinom {r - 1} {2 k + 1} + 2 \sum_k 5^k \dbinom r {2 k + 1}\) | Induction Hypothesis | ||||||||||

\(\displaystyle \) | \(=\) | \(\displaystyle 2 \times \sum_k 5^k \dbinom {r - 1} {2 k + 1} + 2 \sum_k 5^k \left({\dbinom {r - 1} {2 k + 1} + \dbinom r {2 k + 1} }\right)\) |

So $P \left({r}\right) \implies P \left({r + 1}\right)$ and the result follows by the Principle of Mathematical Induction.

Therefore:

- $\forall n \in \Z_{\ge 0}: \displaystyle 2^{n - 1} F_n = \sum_k 5^k \dbinom n {2 k + 1}$

$\blacksquare$

## Historical Note

This result was discovered by Eugène Charles Catalan.