Fibonacci Number of Even Index by Golden Mean Modulo 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $n \in \Z$ be an integer.


Then:

$F_{2 n} \phi \bmod 1 = 1 - \phi^{-2 n}$
$F_n$ denotes the $n$th Fibonacci number
$\phi$ is the golden mean: $\phi = \dfrac {1 + \sqrt 5} 2$


Proof

From definition of$\bmod 1$, the statement above is equivalent to the statement:

$F_{2 n} \phi - 1 + \phi^{-2 n}$ is an integer

We have:

\(\ds F_{2 n} \phi - 1 + \phi^{-2 n}\) \(=\) \(\ds -1 + F_{2 n + 1} - \hat \phi^{2 n} + \phi^{-2 n}\) Fibonacci Number n+1 Minus Golden Mean by Fibonacci Number n
\(\ds \) \(=\) \(\ds -1 + F_{2 n + 1} - \paren {-1}^{2 n} \phi^{-2 n} + \phi^{-2 n}\) Golden Mean by One Minus Golden Mean equals Minus 1
\(\ds \) \(=\) \(\ds -1 + F_{2 n + 1}\)

which is an integer.

Hence the result.

$\blacksquare$


Sources