Fibonacci Number of Index 2n as Sum of Squares of Fibonacci Numbers

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $F_n$ denote the $n$th Fibonacci number.

Then:

$F_{2 n} = {F_{n + 1} }^2 - {F_{n - 1} }^2$


Proof

From Honsberger's Identity:

$\forall m, n \in \Z_{>0}: F_{m + n} = F_{m - 1} F_n + F_m F_{n + 1}$


Setting $m = n$:

\(\ds F_{2 n}\) \(=\) \(\ds F_{n - 1} F_n + F_n F_{n + 1}\)
\(\ds \) \(=\) \(\ds F_n \paren {F_{n + 1} + F_{n - 1} }\)
\(\ds \) \(=\) \(\ds \paren {F_{n + 1} - F_{n - 1} } \paren {F_{n + 1} + F_{n - 1} }\) Definition of Fibonacci Number
\(\ds \) \(=\) \(\ds {F_{n + 1} }^2 - {F_{n - 1} }^2\) Difference of Two Squares

$\blacksquare$


Sources