Finite Subsets form Directed Ordering

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $I$ be a set.

Denote with $\FF$ the set of finite subsets of $I$.

Let $\subseteq$ be the subset relation on $\FF$.


Then $\subseteq$ is a directed ordering on $\FF$.


Proof

From Subset Relation is Ordering, we know that $\subseteq$ is an ordering.

Now let $F, G \in \FF$.

From Set Union Preserves Subsets, conclude that $F \cup G \subseteq I$ as $F, G \subseteq I$.

From Union of Finite Sets is Finite, $F \cup G$ is a finite set.

Hence $F \cup G \in \FF$.

Furthermore, $F \subseteq F \cup G$ and $G \subseteq F \cup G$.

It follows that $\subseteq$ is a directed ordering.

$\blacksquare$


Sources