First-Countability is not Continuous Invariant

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $T_A = \struct {A, \tau_A}$ and $T_B = \struct {B, \tau_B}$ be topological spaces.

Let $\phi: T_A \to T_B$ be a continuous mapping.


If $T_A$ is a first-countable space, then it does not necessarily follow that $T_B$ is also first-countable.


Proof

Let $T_S = \struct {S, \tau_S}$ be the Arens-Fort space.

Let $T_D = \struct {S, \tau_D}$ be the discrete space, also on $S$.

Let $I_S: S \to S$ be the identity mapping on $S$.


From Mapping from Discrete Space is Continuous, we have that $I_S$ is a continuous mapping.

Then we have:

Discrete Space is First-Countable
Arens-Fort Space is not First-Countable

Thus we have demonstrated a continuous mapping from a first-countable space to a space which is not first-countable space.

$\blacksquare$


Sources