First Order ODE/(exp y - 2 x y) y' = y^2

From ProofWiki
Jump to navigation Jump to search

Theorem

The first order ODE:

$(1): \quad \paren {e^y - 2 x y} y' = y^2$

has the general solution:

$x y^2 = e^y + C$


Proof

Let $(1)$ be rearranged as:

$\dfrac {\d y} {\d x} = \dfrac {y^2} {e^y - 2 x y}$

Hence:

$(2): \quad \dfrac {\d x} {\d y} + \dfrac 2 y x = \dfrac {e^y} {y^2}$


It can be seen that $(2)$ is a linear first order ODE in the form:

$\dfrac {\d x} {\d y} + \map P y x = \map Q y$

where:

$\map P y = \dfrac 2 y$
$\map Q y = \dfrac {e^y} {y^2}$

Thus:

\(\ds \int \map P y \rd y\) \(=\) \(\ds \int \dfrac 2 y \rd y\)
\(\ds \) \(=\) \(\ds 2 \ln y\)
\(\ds \) \(=\) \(\ds \ln y^2\)
\(\ds \leadsto \ \ \) \(\ds e^{\int P \rd y}\) \(=\) \(\ds y^2\)

Thus from Solution by Integrating Factor, $(2)$ can be rewritten as:

$\map {\dfrac \d {\d y} } {x y^2} = e^y$

and the general solution is:

$x y^2 = e^y + C$

$\blacksquare$


Sources