First Order ODE/(x^2 - 2 y^2) dx + x y dy = 0

From ProofWiki
Jump to navigation Jump to search

Theorem

The first order ordinary differential equation:

$(1): \quad \paren {x^2 - 2 y^2} \rd x + x y \rd y = 0$


is a homogeneous differential equation with solution:

$y^2 = x^2 + C x^4$


Proof

$(1)$ can also be rendered:

$\dfrac {\d y} {\d x} = -\dfrac {x^2 - 2 y^2} {x y}$


Let:

$\map M {x, y} = x^2 - 2 y^2$
$\map N {x, y} = x y$


Put $t x, t y$ for $x, y$:

\(\ds \map M {t x, t y}\) \(=\) \(\ds \paren {t x}^2 - 2 \paren {t y}^2\)
\(\ds \) \(=\) \(\ds t^2 \paren {x^2 - 2 y^2}\)
\(\ds \) \(=\) \(\ds t^2 \, \map M {x, y}\)
\(\ds \map N {t x, t y}\) \(=\) \(\ds t x t y\)
\(\ds \) \(=\) \(\ds t^2 \paren {x y}\)
\(\ds \) \(=\) \(\ds t^2 \, \map N {x, y}\)

Thus both $M$ and $N$ are homogeneous functions of degree $2$.

Thus, by definition, $(1)$ is a homogeneous differential equation.


By Solution to Homogeneous Differential Equation, its solution is:

$\ds \ln x = \int \frac {\d z} {\map f {1, z} - z} + C$

where:

$\map f {x, y} = -\dfrac {x^2 - 2 y^2} {x y}$


Hence:

\(\ds \ln x\) \(=\) \(\ds \int \frac {\d z} {-\frac {1 - 2 z^2} {z} - z} + C_1\)
\(\ds \) \(=\) \(\ds \int \frac {z \rd z} {z^2 - 1} + C_1\)
\(\ds \) \(=\) \(\ds \frac 1 2 \, \map \ln {z^2 - 1} + C_1\) Primitive of $\dfrac x {x^2 - a^2}$
\(\ds \leadsto \ \ \) \(\ds \map \ln {z^2 - 1}\) \(=\) \(\ds \map \ln {x^2} + \ln C\)
\(\ds \leadsto \ \ \) \(\ds z^2 - 1\) \(=\) \(\ds C x^2\)
\(\ds \leadsto \ \ \) \(\ds \frac {y^2} {x^2} - 1\) \(=\) \(\ds C x^2\)
\(\ds \leadsto \ \ \) \(\ds y^2\) \(=\) \(\ds x^2 + C x^4\)

$\blacksquare$


Sources