First Order ODE/(x + y) dx = (x - y) dy/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

is a homogeneous differential equation with general solution:

$\arctan \dfrac y x = \ln \sqrt {x^2 + y^2} + C$


Proof

We have:

\(\ds \paren {x + y} \rd x\) \(=\) \(\ds \paren {x - y} \rd y\)
\(\ds \leadsto \ \ \) \(\ds x \rd y - y \rd x\) \(=\) \(\ds x \rd x + y \rd y\) rearranging
\(\ds \leadsto \ \ \) \(\ds \frac {x \rd y - y \rd x} {x^2 + y^2}\) \(=\) \(\ds \frac {x \rd x + y \rd y} {x^2 + y^2}\) dividing through by $x^2 + y^2$
\(\ds \leadsto \ \ \) \(\ds \frac {x \rd y - y \rd x} {x^2 + y^2}\) \(=\) \(\ds \frac {\map \d {x^2 + y^2} } {2 \paren {x^2 + y^2} }\) Differential of Sum of Squares
\(\ds \leadsto \ \ \) \(\ds \map \d {\arctan \dfrac y x}\) \(=\) \(\ds \frac {\map \d {x^2 + y^2} } {2 \paren {x^2 + y^2} }\) Differential of Arctangent of Quotient
\(\ds \leadsto \ \ \) \(\ds \arctan \dfrac y x\) \(=\) \(\ds \frac {\map \ln {x^2 + y^2} } 2 + C\) integrating
\(\ds \leadsto \ \ \) \(\ds \arctan \dfrac y x\) \(=\) \(\ds \ln \sqrt {x^2 + y^2} + C\)

$\blacksquare$


Sources