First Order ODE/(y over x^2) dx + (y - 1 over x) dy = 0

From ProofWiki
Jump to navigation Jump to search

Theorem

The first order ordinary differential equation:

$(1): \quad \dfrac y {x^2} \rd x + \paren {y - \dfrac 1 x} \rd y = 0$

is an exact differential equation with solution:

$\dfrac {y^2} 2 - \dfrac y x = C$


Proof

Let $M$ and $N$ be defined as:

$\map M {x, y} = \dfrac y {x^2}$
$\map N {x, y} = y - \dfrac 1 x$


Then:

\(\ds \frac {\partial M} {\partial y}\) \(=\) \(\ds \frac 1 {x^2}\)
\(\ds \dfrac {\partial N} {\partial x}\) \(=\) \(\ds \dfrac 1 {x^2}\)


Thus $\dfrac {\partial M} {\partial y} = \dfrac {\partial N} {\partial x}$ and $(1)$ is seen by definition to be exact.


By Solution to Exact Differential Equation, the solution to $(1)$ is:

$\map f {x, y} = C$

where:

\(\ds \dfrac {\partial f} {\partial x}\) \(=\) \(\ds \map M {x, y}\)
\(\ds \dfrac {\partial f} {\partial y}\) \(=\) \(\ds \map N {x, y}\)


Hence:

\(\ds f\) \(=\) \(\ds \map M {x, y} \rd x + \map g y\)
\(\ds \) \(=\) \(\ds \int \dfrac y {x^2} \rd x + \map g y\)
\(\ds \) \(=\) \(\ds - \frac y x + \map g y\)

and:

\(\ds f\) \(=\) \(\ds \int \map N {x, y} \rd y + \map h x\)
\(\ds \) \(=\) \(\ds \int \paren {y - \dfrac 1 x} \r d y + \map h x\)
\(\ds \) \(=\) \(\ds \frac {y^2} 2 - \frac y x + \map h x\)

Thus:

$\map f {x, y} = \dfrac {y^2} 2 - \dfrac y x$


By Solution to Exact Differential Equation, the solution to $(1)$ is:

$\dfrac {y^2} 2 - \dfrac y x = C$

$\blacksquare$