First Order ODE/dy = k y dx/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $k \in \R$ be a real number.

The first order ODE:

$\dfrac {\d y} {\d x} = k y$

has the general solution:

$y = C e^{k x}$


Proof

Write the differential equation as:

$y' - k y = 0$

Taking Laplace transforms:

$\laptrans {y' - k y} = \laptrans 0$

From Laplace Transform of Constant Mapping, we have:

$\laptrans 0 = 0$

We also have:

\(\ds \laptrans {y' - k y}\) \(=\) \(\ds \laptrans {y'} - k \laptrans y\) Linear Combination of Laplace Transforms
\(\ds \) \(=\) \(\ds s \laptrans y - \map y 0 - k \laptrans y\) Laplace Transform of Derivative

So:

$\paren {s - k} \laptrans y = \map y 0$

Giving:

$\laptrans y = \dfrac {\map y 0} {s - k}$

So:

\(\ds y\) \(=\) \(\ds \invlaptrans {\frac {\map y 0} {s - k} }\) Definition of Inverse Laplace Transform
\(\ds \) \(=\) \(\ds \map y 0 \invlaptrans {\laptrans {e^{k x} } }\) Linear Combination of Laplace Transforms, Laplace Transform of Exponential
\(\ds \) \(=\) \(\ds \map y 0 e^{k x}\) Definition of Inverse Laplace Transform

Setting $C = \map y 0$ gives the result.

$\blacksquare$