First Order ODE/y' ln (x - y) = 1 + ln (x - y)

From ProofWiki
Jump to navigation Jump to search

Theorem

The first order ordinary differential equation:

$(1): \quad \dfrac {\d y} {\d x} \map \ln {x - y} \d x = 1 + \map \ln {x - y}$

is an exact differential equation with solution:

$\paren {x - y} \map \ln {x - y} = C - y$


Proof

Let $(1)$ be expressed as:

$\paren {1 + \map \ln {x - y} } \rd x - \map \ln {x - y} \rd y = 0$


Let:

$\map M {x, y} = 1 + \map \ln {x - y}$
$\map N {x, y} = -\map \ln {x - y}$

Then:

\(\ds \dfrac {\partial M} {\partial y}\) \(=\) \(\ds -\frac 1 {x - y}\)
\(\ds \dfrac {\partial N} {\partial x}\) \(=\) \(\ds -\frac 1 {x - y}\)


Thus $\dfrac {\partial M} {\partial y} = \dfrac {\partial N} {\partial x}$ and $(1)$ is seen by definition to be exact.


By Solution to Exact Differential Equation, the solution to $(1)$ is:

$\map f {x, y} = C$

where:

\(\ds \dfrac {\partial f} {\partial x}\) \(=\) \(\ds \map M {x, y}\)
\(\ds \dfrac {\partial f} {\partial y}\) \(=\) \(\ds \map N {x, y}\)


Hence:

\(\ds f\) \(=\) \(\ds \map M {x, y} \rd x + \map g y\)
\(\ds \) \(=\) \(\ds \int \left({1 + \map \ln {x - y} }\right) \rd x + \map g y\)
\(\ds \) \(=\) \(\ds x + \paren {x - y} \map \ln {x - y} - \paren {x - y} + \map g y\) Primitive of $\ln x$

and:

\(\ds f\) \(=\) \(\ds \int \map N {x, y} \rd y + \map h x\)
\(\ds \) \(=\) \(\ds \int \left({-\map \ln {x - y} }\right) \rd y + \map h x\)
\(\ds \) \(=\) \(\ds \paren {x - y} \map \ln {x - y} - \paren {x - y} + \map h x\) Primitive of $\ln x$


Thus:

\(\ds \map f {x, y}\) \(=\) \(\ds x + \paren {x - y} \map \ln {x - y} - \paren {x - y}\)
\(\ds \) \(=\) \(\ds \paren {x - y} \map \ln {x - y} + y\)

and by Solution to Exact Differential Equation, the solution to $(1)$ is:

\(\ds \paren {x - y} \map \ln {x - y} + y\) \(=\) \(\ds C\)
\(\ds \leadsto \ \ \) \(\ds \paren {x - y} \map \ln {x - y}\) \(=\) \(\ds C - y\)

$\blacksquare$


Sources