First Order ODE/y dx + (x^2 y - x) dy = 0/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

The first order ODE:

$(1): \quad y \rd x + \paren {x^2 y - x} \rd y = 0$

has the general solution:

$\dfrac {y^2} 2 - \dfrac y x = C$


This can also be presented in the form:

$\dfrac {\d y} {\d x} + \dfrac y {x^2 y - x}$


Proof

We note that $(1)$ is in the form:

$\map M {x, y} \d x + \map N {x, y} \d y = 0$

but that $(1)$ is not exact.

So, let:

$\map M {x, y} = y$
$\map N {x, y} = x^2 y - x$

Let:

$\map P {x, y} = \dfrac {\partial M} {\partial y} - \dfrac {\partial N} {\partial x}$

Thus:

\(\ds \map P {x, y}\) \(=\) \(\ds 1 - \paren {2 x y - 1}\)
\(\ds \) \(=\) \(\ds 2 \paren {1 - x y}\)


It can be observed that:

\(\ds \frac {\map P {x, y} } {\map N {x, y} }\) \(=\) \(\ds \frac {2 \paren {1 - x y} } {x^2 y - x}\)
\(\ds \) \(=\) \(\ds \frac {-2 \paren {x y - 1} } {x \paren {x y - 1} }\)
\(\ds \) \(=\) \(\ds -\frac 2 x\)

Thus $\dfrac {\map P {x, y} } {\map N {x, y} }$ is a function of $x$ only.

So Integrating Factor for First Order ODE: Function of One Variable can be used:

$\map \mu x = e^{\int \map g x \rd x}$

Hence:

\(\ds \int \map g x \rd x\) \(=\) \(\ds \int - \paren {2 / x} \rd x\)
\(\ds \) \(=\) \(\ds - 2 \ln x\)
\(\ds \leadsto \ \ \) \(\ds e^{\int \map g x \rd x}\) \(=\) \(\ds \frac 1 {x^2}\)

Thus an integrating factor for $(1)$ has been found:

$\mu = \dfrac 1 {x^2}$

which yields, when multiplying it throughout $(1)$:

$\dfrac y {x^2} \rd x + \paren {y - \dfrac 1 x} \rd y = 0$

which is now exact.


By First Order ODE: $\dfrac y {x^2} \rd x + \paren {y - \dfrac 1 x} \rd y = 0$, its solution is:

$\dfrac {y^2} 2 - \dfrac y x = C$

$\blacksquare$


Sources