First Order ODE in form y' = f (a x + b y + c)

From ProofWiki
Jump to navigation Jump to search

Theorem

The first order ODE:

$\dfrac {\d y} {\d x} = \map f {a x + b y + c}$

can be solved by substituting:

$z := a x + b y + c$

to obtain:

$\ds x = \int \frac {\d z} {b \map f z + a}$


Proof

We have:

$\dfrac {\d y} {\d x} = \map f {a x + b y + c}$

Put:

$z := a x + b y + c$

Then:

\(\ds z\) \(=\) \(\ds a x + b y + c\)
\(\ds \leadsto \ \ \) \(\ds \frac {\d z} {\d x}\) \(=\) \(\ds a + b \dfrac {\d y} {\d x}\)
\(\ds \leadsto \ \ \) \(\ds \dfrac {\d y} {\d x}\) \(=\) \(\ds \frac 1 b \paren {\frac {\d z} {\d x} - a}\)
\(\ds \leadsto \ \ \) \(\ds \frac 1 b \paren {\frac {\d z} {\d x} - a}\) \(=\) \(\ds \map f z\)
\(\ds \leadsto \ \ \) \(\ds \frac {\d z} {\d x}\) \(=\) \(\ds b \map f z + a\)


This can be solved by Solution to Separable Differential Equation:

$\ds x = \int \frac {\d z} {b \map f z + a}$

$\blacksquare$


Sources