Fixed Point of Idempotent Mapping

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S$ be a set.

Let $f: S \to S$ be an idempotent mapping.

Let $\Img f$ be the image of $f$.

Let $x \in S$.


Then $x$ is a fixed point of $f$ if and only if $x \in \Img f$.


Proof

Necessary Condition

Let $x$ be a fixed point of $f$.

Then:

$\map f x = x$

and so by definition of image of mapping:

$x \in \Img f$

$\Box$


Sufficient Condition

Let $x \in \Img f$.

Then by the definition of image:

$\exists y \in S: \map f y = x$

Then:

\(\ds x\) \(=\) \(\ds \map f y\)
\(\ds \leadsto \ \ \) \(\ds \map f x\) \(=\) \(\ds \map f {\map f y}\) Definition of Mapping
\(\ds \) \(=\) \(\ds \map f y\) Definition of Idempotent Mapping
\(\ds \) \(=\) \(\ds x\)


Thus by definition $x$ is a fixed point of $f$.

$\blacksquare$