Floor of x+m over n

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $m, n \in \Z$ such that $n > 0$.

Let $x \in \R$.


Then:

$\floor {\dfrac {x + m} n} = \floor {\dfrac {\floor x + m} n}$

where $\floor x$ denotes the floor of $x$.


Corollary

Let $n \in \Z$ such that $n > 0$.

Let $x \in \R$.


Then:

$\floor {\dfrac x n} = \floor {\dfrac {\floor x} n}$

where $\floor x$ denotes the floor of $x$.


Proof 1

Let:

$y = x - \floor x$
$M = \floor x + m$

We now have:

$(1): \quad 0 \le y < 1$

and thus:

$\floor y = 0$

By Division Theorem, we can write:

$(2): \quad M = k n + r$

with $k \in \Z$ and $0 \le r \le n - 1$.

By $(1)$ and $(2)$:

$(3): \quad 0 \le y + r < 1 + n - 1 = n$


We have:

\(\ds \floor {\frac {y + M} n}\) \(=\) \(\ds \floor {\frac {y + k n + r} n}\) from $(2)$
\(\ds \) \(=\) \(\ds \floor {k + \frac {y + r} n}\)
\(\ds \) \(=\) \(\ds k + \floor {\frac {y + r} n}\) Floor of Number plus Integer
\(\ds \) \(=\) \(\ds k\) from $(3)$
\(\ds \) \(=\) \(\ds \floor {\frac M n}\)


Substituting $y$ and $M$, we obtain:

\(\ds \floor {\frac {x + m} n}\) \(=\) \(\ds \floor {\frac {x - \floor x + \floor x + m} n}\)
\(\ds \) \(=\) \(\ds \floor {\frac {y + M} n}\)
\(\ds \) \(=\) \(\ds \floor {\frac M n}\)
\(\ds \) \(=\) \(\ds \floor {\frac {\floor x + m} n}\)

and the result follows.

$\blacksquare$


Proof 2

Let $f: \R \to \R$ be the real function defined as:

$\forall x \in \R: \map f x = \dfrac {x + m} n$

It is clear that $f$ is both strictly increasing and continuous on the whole of $\R$.

Let $\dfrac {x + m} n \in \Z$.

Then:

\(\ds \exists s \in \Z: \, \) \(\ds \dfrac {x + m} n\) \(=\) \(\ds s\)
\(\ds \leadsto \ \ \) \(\ds x + m\) \(=\) \(\ds n s\)
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds n s - m\)
\(\ds \) \(\in\) \(\ds \Z\)

Thus:

$\forall x \in \R: \map f x \in \Z \implies x \in \Z$

So the conditions are fulfilled for McEliece's Theorem (Integer Functions) to be applied:

$\floor {\map f x} = \floor {\map f {\floor x} } \iff \paren {\map f x \in \Z \implies x \in \Z}$

Hence the result.

$\blacksquare$


Sources